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20.1 INTRODUCTION

608

For forecasting purposes, a simple model that describes the behavior of a variable (or
a set of variables) in terms of past values, without the benefit of a well-developed
theory, may well prove quite satisfactory. Researchers have observed that the large
simultaneous-equations macroeconomic models constructed in the 1960s frequently
have poorer forecasting performance than fairly simple, univariate time-series models
based on just a few parameters and compact specifications. It is just this observation
that has raised to prominence the univariate time-series forecasting models pioneered
by Box and Jenkins (1984).

In this chapter, we introduce some of the tools employed in the analysis of time-
series data.! Section 20.2 describes stationary stochastic processes. We encountered this
body of theory in Chapters 12, 16, and 19, where we discovered that certain assump-
tions were required to ascribe familiar properties to a time-series of data. We continue
that discussion by defining several characteristics of a stationary time-series. The recent
literature in macroeconometrics has seen an explosion of studies of nonstationary time
series. Nonstationarity mandates a revision of the standard inference tools we have
used thus far. In Section 20.3, on nonstationarity and unit roots, we discuss some of
these tools. Section 20.4 on cointegration discusses some extensions of regression mod-
els that are made necessary when strongly trended, nonstationary variables appear in
them.

Some of the concepts to be discussed here were introduced in Section 12.2. Sec-
tion 12.2 also contains a cursory introduction to the nature of time-series processes. It
will be useful to review that material before proceeding with the rest of this chapter. Fi-
nally, Sections 15.9.1 on estimation and 15.9.2 and 19.4.3 on stability of dynamic models
will be especially useful for the latter sections of this chapter.

IEach topic discussed here is the subject of a vast literature with articles and book-length treatments at all
levels. For example, two survey papers on the subject of unit roots in economic time-series data, Diebold
and Nerlove (1990) and Campbell and Perron (1991) cite between them over 200 basic sources on the
subject. The literature on unit roots and cointegration is almost surely the most rapidly moving target in
econometrics. Stock’s (1994) survey adds hundreds of references to those in the aforementioned surveys
and brings the literature up to date as of then. Useful basic references on the subjects of this chapter are
Box and Jenkins (1984); Judge et al. (1985); Mills (1990); Granger and Newbold (1996); Granger and Watson
(1984); Hendry, Pagan, and Sargan (1984); Geweke (1984); and especially Harvey (1989, 1990): Enders (1995):
Hamilton (1994) and Patterson (2000). There are also many survey style and pedagogical articles on these
subjects. The aforementioned paper by Diebold and Nerlove is a useful tour guide through some of the
literature. We recommend Dickey, Bell, and Miller (1986) and Dickey, Jansen, and Thorton (1991} as well.
The latter is an especially clear introduction at a very basic level of the fundamental tools for empirica
researchers. :
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20.2 STATIONARY STOCHASTIC PROCESSES

The essential building block for the models to be discussed in this chapter is the white
noise time-series process,

{e:},t = —00, +00,

where each element in the sequence has E[e,] = 0, E[¢?] = o2, and Cov[e,, &] = 0
for all s # r. Each element in the series is a random draw from a population with zero
mean and constant variance. It is occasionally assumed that the draws are independent
or normally distributed, although for most of our analysis, neither assumption will be
essential.

A univariate time-series model describes the behavior of a variable in terms of its
own past values. Consider, for example, the autoregresswe disturbance models intro-
duced in Chapter 12,

Uy = pU—1 F & (20-1)

Autoregressive disturbances are generally the residual variation in a regression model
built up from what may be an elaborate underlying theory, y; = B’x; + w,. The theory
usually stops short of stating what enters the disturbance. But the presumption that
some time-series process generates x, should extend equally to . There are two ways
to interpret this simple series. As stated above, i, equals the previous value of u, plus
an “innovation,” &. Alternatively, by manipulating the series, we showed that «, could
be interpreted as an aggregation of the entire history of the &,’s.

Occasionally, statistical evidence is convincing that a more intricate process is at
work in the disturbance. Perhaps a second-order autoregression,

Uy = P11 + Pall 2 + &, (20-2)
better explains the movement of the disturbances in the regression. The model may not
arise naturally from an underlying behavioral theory. But in the face of certain kinds
of statistical evidence, one might conclude that the more elaborate model would be
preferable.? This section will describe several alternatives to the AR(1) model that we
have relied on in most of the preceding applications.

20.2.1 AUTOREGRESSIVE MOVING-AVERAGE PROCESSES
The variable y; in the model
Vi=utyy-1+é& (20-3)
is said to be autoregressive (or self-regressive) because under certain assumptions,
Elyi vl = p+ vy

A more general pth-order autoregression or AR(p) process would be written

Ve=u+nya+veia+-+VpYi—p + e (20-4)

ZFor example, the estimates of &, computed after a correction for first- order autocorrelation may fail tests of
randomness such as the LM (Section 12.7.1) test.
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The analogy to the classical regression is clear. Now consider the first order moving
average, or MA(1) specification

Ye=u+ & —0e 1. By (20-5)
By writing

yi=pn+1-00¢
or

W _ M 3

1-6L " 1-6 "%

we find that
Ve = 1ﬁ9 — Y1 — 0%y o — e+ gy

Once again, the effect is to represent y, as a function of its own past values.
An extremely general model that encompasses (20-4) and (20-5) is the autoregres-
sive moving average, or ARMA(p, q), model:

V=0t Yo+ Y2t F VpYip & — 0181 — - — OgEig. (20-6)

Note the convention that the ARMA(p, g) process has p autoregressive (lagged
dependent-variable) terms and ¢ lagged moving-average terms. Researchers have found
that models of this sort with relatively small values of p and g have proved quite effective
as forecasting models.

The disturbances &, are labeled the innovations in the model. The term is fitting
because the only new information that enters the processes in period ¢ is this innovation.
Consider, then, the AR(1) process

Nn=p+yy-1te. : (20-7)
Either by successive substitution or by using the lag operator, we obtain
(I-yDy =pn+e

or
Y= RO DL (20-8)
i=0

The observed series is a particular type of aggregation of the history of the innovations.
The moving average, MA(g) model,

Ve=m+e& —018g — - —bger—g = p+ DL, (20-9)

is yet another, particularly simple form of aggregation in that only information from the
g most recent periods is retained. The general result is that many time-series processes
can be viewed either as regressions on lagged values with additive disturbances or as

3The lag operator is discussed in Section 19.2.2. Since i is a constant, (1 — oL '\ =p+0u+ FPu+-.=
/(1 — ). The lag operator may be set equal to one when it operates on a constant.

4See Section 19.3.2 for discussion of models with infinite lag structures,
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aggregations of a history of innovations. They differ from one to the next in the form
of that aggregation.

More involved processes can be similarly represented in either an autoregressive
or moving-average form. (We will turn to the mathematical requirements below.) Con-
sider, for example, the ARMA(2, 1) process,

Ye=wm+ Y11+ Va2 + & —0e,
which we can write as
(A—-0L)e =y — pu—yY1¥—1 — V2)i-2.
If || < 1, then we can divide both sides of the equation by (1 — 6 L) and obtain
0
=Y 0" i — I~ V1Yii1 = V2Yimi-2).
i=0
After some tedious manipulation, this equation produces the autoregressive form,

oC
m
V= 1-¢ + ;ﬂiyt—i + &1,

where
m=y—0 and 7w, =—0 -6/t =7, j=2,3,.... (20-10)
Alternatively, by similar (yet more tedious) manipulation, we would be able to write

m [ 1-6L ]
+ 2
T—wn— 1-=ynL—y,L

+Za & (20-11)

y:
' 1-)’1*1/2 —

In each case, the weights, 7; in the autoregressive form and §; in the moving-average
form are complicated functions of the original parameters. But nonetheless, each is just
an alternative representation of the same time-series process that produces the current
value of y,. This result is a fundamental property of certain time series. We will return
to the issue after we formally define the assumption that we have used at several steps
above that allows these transformations.

20.2.2 STATIONARITY AND INVERTIBILITY

At several points in the preceding, we have alluded to the notion of stationarity, either
directly or indirectly by making certain assumptions about the parameters in the model.
In Section 12.3.2, we characterized an AR(1) disturbance process

Up = pu;—1 + &,

as stationary if [p| < 1 and g, is white noise. Then

El[u,] =0 forallt,
2

O'
\V/ - _%e
ar[u,] = — \’ 20-12)
Jt—s| ~2
Cov[u,, us] = '01 — 525

If [p| = 1, then the variance and covariances are undefined.
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In the following, we use ¢, to denote the white noise innovations in the process. The
ARMA(p, q) process will be denoted as in (20-6).

DEFINITION 20.1 Covariance Stationarity
A stochastic process v, is weakly stationary or covariance stationary if it satisfies
the following requirements:

1. E|[y]is independent of t.
2. Var|y] is a finite, positive constant, independent of t.
3. CoV|y, y5] is a finite function of |t — s}, but not of t ors.

The third requirement is that the covariance between observations in the series is a
function only of how far apart they are in time, not the time at which they occur. These
properties clearly hold for the AR(1) process immediately above. Whether they apply
for the other models we have examined remains to be seen.

We define the autocovariance at lag k as

A.k = COV[yt, }’t—k]-
Note that

Aok = Covyr, Yrix| = Ak

Stationarity implies that autocovariances are a function of k, but not of . For example.
in (20-12), we see that the autocovariances of the AR(1) process yr = .+ yyi—1 + &
are

k2
Y O

Covly:, yi-k] = k=0,1.... S E))

1—y%

If |¥| < 1, then this process is stationary. For any MA(g) series,
Vi=u+e =015 — - —0;8 4,
Ely)=pn+Ele] =61 E[eim1] =+  — 6 E[ei—g] = 11,
Varly] = (1+6{ +--- +67) o,
Covly, yio1] = (=61 + 6162 + 6205 + - - +6,_16,) o,

(20-14)

and so on until .

Covly;, yi-g-nl = [-04-1 + 919111052’
Covly, yi—¢l = _911‘782’

5Strong stationarity requires that the joint distribution of all sets of observations (y, y;-1. ...) be invariant
to when the observations are made. For practical purposes in econometrics, this statement is a theoretical
fine point. Although weak stationary suffices for our applications, we would not normally analyze weakly
stationary time series that were not strongly stationary as well. Indeed, we often go even beyond this step
and assume joint normality.
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and, for lags greater than g, the autocovariances are zero. It follows, therefore, that finite
moving-average processes are stationary regardless of the values of the parameters.
The MA(1) process y, =¢ — Og_1 is an important special case that has Var[y,] =
(1+6%)02, A = —602, and A = O for |k| > 1.

For the AR(1) process, the stationarity requirement is that |y| < 1, which in turn,
implies that the variance of the moving average representation in (20-8) is finite. Con-
sider the AR(2) process

Y= p+ YY1+ Y2Yi2 + &
Write this equation as
CDy = p+e,
where
C(L)=1-yL-pl?
Then, if it is possible, we invert this result to produce
=[CDI (e + &0

Whether the inversion of the polynomial in the lag operator leads to a convergent
series depends on the values of y; and y». If so, then the moving-average representation
will be

[0 ¢]
Y= Siute )
i=0

so that
o0
Varly,] = Z 8202,
i=0

Whether this result is finite or not depends on whether the series of §;s is exploding
or convergmg For the AR(2) case, the series converges if |y;| <1,y + 2 <1, and
y2—y <18

For the more general case, the autoregressive process is stationary if the roots of
the characteristic equation,

C=1-nz-—pd -~y =0,

have modulus greater than one, or “lie outside the unit circle.”” It follows that if a
stochastic process is stationary, it has an infinite moving-average representation (and, if
not, it does not). The AR(1) process is the simplest case. The characteristic equation is

C=1-yz=0,

5This requirement restricts (1, y2) to within a triangle with points at (2, 1), (=2, —1), and 0, 1).

"The roots may be complex. (See Sections 15.9.2 and 19.4.3. ) They are of the form a £ bi, where i = /—1.
The unit circle refers to the two-dimensional set of values of a and b defined by a% 4 b2 = 1, which defines a
circle centered at the origin with radius 1.
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and its single root is 1/y. This root lies outside the unit circle if |[y| < 1, which we saw
earlier.

Finally, consider the inversion of the moving-average process in (20-9) and (20-10).
Whether this inversion is possible depends on the coefficients in D(L) in the same fash-
ion that stationarity hinges on the coefficients in C(L). This counterpart to stationarity of
an autoregressive process is called invertibility. For it to be possible to invert a moving-
average process to produce an autoregressive representation, the roots of D(L) = 0
must be outside the unit circle. Notice, for example, that in (20-5), the inversion of the
moving-average process is possible only if |#] < 1. Since the characteristic equation for
the MA(1) process is 1 — § L = 0, the root is 1/6, which must be larger than one.

If the roots of the characteristic equation of a moving-average process all lie outside
the unit circle, then the series is said to be invertible. Note that invertibility has no bearing
on the stationarity of a process. All moving-average processes with finite coefficients
are stationary. Whether an ARMA process is stationary or not depends only on the AR
part of the model.

20.2.3 AUTOCORRELATIONS OF A STATIONARY STOCHASTIC
PROCESS

The function

ke = Covly:, yi—k]

is called the autocovariance function of the process y;. The autocorrelation function, or
ACE, is obtained by dividing by the variance A to obtain
Pk=ﬁ’ -1<p =1l
Ao

For a stationary process, the ACF will be a function of k and the parameters of the
process. The ACF is a useful device for describing a time-series process in much the same
way that the moments are used to describe the distribution of a random variable. One
of the characteristics of a stationary stochastic process is an autocorrelation function
that either abruptly drops to zero at some finite lag or eventually tapers off to zero. The
AR(1) process provides the simplest example, since

o = v,

which is a geometric series that either declines monotonically from py = 1if y is positive
or with a damped sawtooth pattern if y is negative. Note as well that for the process
Y =VY-1+6,

Pk =YpPk-1, k=1,

which bears a noteworthy resemblance to the process itself.

For higher-order autoregressive series, the autocorrelations may decline monoton-
ically or may progress in the fashion of a damped sine wave.? Consider, for example, the
second-order autoregression, where we assume without loss of generality that u = 0

8The behavior is a function of the roots of the characteristic equation. This aspect is discussed in Section 15.9
and especially 15.9.3.
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(since we are examining second moments in deviations from the mean):

Y =VYi-1+V2Yi—2 + &

If the process is stationary, then Var([y;] = Var[y,_] for all s. Also, Var[y,] = Cov[y,, ],
and Covle;, yi—s] = 0if s > 0. These relationships imply that

A =ViM + voho + 0'82.
Now, using additional lags, we find that
M = y1hg + y2i

and ‘ (20-15)
A2 = y1A1 + y2h0.

These three equations provide the solution:

(I —92)/d+y2)
Ao = 082 [ V. é 2)’ ]
(I=v'-vi)
The variance is unchanging, so we can divide throughout by A to obtain the relationships
for the autocorrelations,

pL=Y1P0 + V2P1-
Since pg =1, p1 = y1/(1 — y2). Using the same procedure for additional lags, we find that

P2 =Y1P1 + V2,
s0 pp = y2/(1 — y2) + y2- Generally, then, for lags of two or more,

Pk = V1Pk—1 + V20r—2.

Once again, the autocorrelations follow the same difference equation as the series itself.
The behavior of this function depends on y4, y2, and k, although not in an obvious way.
The inherent behavior of the autocorrelation function can be deduced from the charac-
teristic equation.® For the second-order process we are examining, the autocorrelations
are of the form

pr = $1(1/20)% + (1 22)F,
where the two roots arel®

Yz=3[n+Vyl+4p)].

If the two roots are real, then we know that their reciprocals will be less than one in
absolute value, so that p; will be the sum of two terms that are decaying to zero. If the
two roots are complex, then p; will be the sum of two terms that are oscillating in the
form of a damped sine wave.

The set of results that we would use to derive this result are exactly those we used in Section 19.4.3 to
analyze the stability of a dynamic equation, which makes sense, of course, since the equation linking the
autocorrelations is a simple difference equation.

0We used the device in Section 19.4.4 to find the characteristic roots. For a second-order equation, the
quadratic is easy to manipulate.
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Applications that involve autoregressions of order greater than two are relatively
unusual. Nonetheless, higher-order models can be handled in the same fashion. For the
AR(p) process

=yt veyioat o+ VpYi-p+ &,
the autocovariances will obey the Yule—-Walker equations
M=y +r2ha+ o+ vphp + 02,
A1 = yido +y2hi + -+ VpAp,
and so on. The autocorrelations will once again follow the same difference equation as
the original series,
Pk = Y1Pk=1 + V2pk-2 +*+ + VpPk—p-
The ACF for a moving-average process is very simple to obtain. For the first-order
process,

Yo =& —0e1,

ho = (14 6%)02,

)\.1 = —9082,
then A, = 0 for k > 1. Higher-order processes appear similarly. For the MA(2) process,
by multiplying out the terms and taking expectations, we find that
ho = (1467 +63)02,

M = (=6 + 6162)07,

Ay = —91062,
=0, k>2.
The pattern for the general MA(g) process y; = & — 0161 — a6 0 — -+ — B84 1S

analogous. The signature of amoving-average process is an autocorrelation function that
abruptly drops to zero at one lag past the order of the process. As we will explore below,
this sharp distinction provides a statistical tool that will help us distinguish between these
two types of processes empirically.

The mixed process, ARMA(p, g), is more complicated since it is a mixture of the
two forms. For the ARMA(1, 1) process

Vi=v¥Y-1+& —0¢_1,
the Yule-Walker equations are
A= E[yi(yyi-1 +& —0g_1)] =y +02 —ol(0y —6%),
M =yio— 9052’ v
and '

A =Vre1, k>1

The general characteristic of ARMA processes is that when the moving-average com-
ponent is of order g, then in the series of autocorrelations there will be an initial g terms
that are complicated functions of both the AR and MA parameters, but after q periods,

Pk = Y1Pk-1 + V2Pk—2+++ + Yplk-p, k> q.
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20.2.4 PARTIAL AUTOCORRELATIONS OF A STATIONARY
STOCHASTIC PROCESS

The autocorrelation function ACF (k) gives the gross correlation between y; and y,_g.
But as we saw in our analysis of the classical regression model in Section 3.4, a gross
correlation such as this one can mask a completely different underlying relationship. In
this setting, we observe, for example, that a correlation between y, and y,_» could arise
primarily because both variables are correlated with y,_;. Consider the AR(1) process
y: = yYyi—1 + &. The second gross autocorrelation is p, = y2. But in the same spirit,
we might ask what is the correlation between y; and y,_» net of the intervening effect
of y._1? In this model, if we remove the effect of y,_; from y;, then only & remains,
and this disturbance is uncorrelated with y, ». We would conclude that the partial
autocorrelation between y, and y,_; in this model is zero.

DEFINITION 20.2 Partial Autocorrelation Coefficient
The partial correlation between y, and v,  is the simple correlation between y,_
and y, minus that part explained linearly by the intervening lags. That is,

,0;: = Corry, — E*(yi | Yi=1, - - s Yiok#1)s J’t—k],

where E*(Yi | Vi1, -+ -» Yi—k+1) IS the minimum mean-squared error predictor of
Ye by Yoo, oo Yicka1s

The function E*(.) might be the linear regression if the conditional mean happened
to be linear, but it might not. The optimal linear predictor is the linear regression,
however, so what we have is

pi = Corrly: — B1yi-1 — Bayi—2 — -+ — Be=1Yi—k+1, Yi—kl

where 8 = [B1, B2, - ... Bic1] = {Varlyi_i yica. -, Yimiaal} % COVIy (et iz -+
¥i—k+1)]’- This equation will be recognized as a vector of regression coefficients. As such,
what we are computing here (of course) is the correlation between a vector of resid-
uals and y, . There are various ways to formalize this computation [see, e.g., Enders
(1995, pp. 82-85)]. One intuitively appealing approach is suggested by the equivalent
definition (which is also a prescription for computing it), as follows.

¢ DEFINITION 20.3 Partial Autocorrelation Coefficient

§ The partial correlation between y, and y,_y is the last coefficient in the linear
projection of Ve on [Yi—1, Ye—2+ - - - » Yi—i)

[ B ]

Ao M
B2

A AQ
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As before, there are some distinctive patterns for particular time-series processes.
Consider first the autoregressive processes, :

Yi=viY-1+tvVey2+- -+ VpYi—p T+ &
We are interested in the last coefficient in the projection of y; on y;_;, thenon [y_1, y;-2],
and so on. The first of these is the simple regression coefficient of y, on y;_3, so

._ Covly.y—a] _ M

p = = P1.

Varly 4] ko
The first partial autocorrelation coefficient for any process equals the first
autocorrelation coefficient.

Without doing the messy algebra, we also observe that for the AR(p) process, pj is a
mixture of all the y coefficients. Of course, if p equals 1, then p; = p = y. For the
higher-order processes, the autocorrelations are likewise mixtures of the autoregressive
coefficients until we reach py-In view of the form of the AR(p) model, the last coefficient
in the linear projection on p lagged values is y,. Also, we can see the signature pattern
of the AR(p) process, any additional partial autocorrelations must be zero, because
they will be simply pf = Corrle;, yi—¢] = 0if k > p.

Combining results thus far, we have the characteristic pattern for an autoregressive
process. The ACEF, py, will gradually decay to zero, either monotonically if the charac-
teristic roots are real or in a sinusoidal pattern if they are complex. The PACEF, pf, will
be irregular out to lag p, when they abruptly drop to zero and remain there.

The moving-average process has the mirror image of this pattern. We have already
examined the ACF for the MA(g) process; it has g irregular spikes, then it falls to zero
and stays there. For the PACEF, write the model as

yi=(0—6L—61*—- - —0,[9e,.

If the series is invertible, which we will assume throughout, then we have

Bz _
1-6L—---—6,L1

&ty

or

=my-1+myo+--+ &

o0
= Z TiYe—i + &
i=1

The autoregressive form of the MA(q) process has an infinite number of terms, which
means that the PACF will not fall off to zero the way that the PACF of the AR process
does. Rather, the PACF of an MA process will resemble the ACF of an AR process. For
example, for the MA(1) process y; = &, — f¢;_1, the AR representation is

Vi=0y 1 +0y o+ +e,

which is the familiar form of an AR(1) process. Thus, the PACF of an MA(1) process is
identical to the ACF of an AR(1) process, p; = 6.

The ARMA(p, g) is a mixture of the two types of processes, so its ACF and PACF
are likewise mixtures of the two forms discussed above. Generalities are difficult to
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draw, but normally, the ACF of an ARMA process will have a few distinctive spikes in
the early lags corresponding to the number of MA terms, followed by the characteristic
smooth pattern of the AR part of the model. High-order MA processes are relatively
uncommon in general, and high-order AR processes (greater than two) seem primarily
to arise in the form of the nonstationary processes described in the next section. For
a stationary process, the workhorses of the applied literature are the (2, 0) and (1, 1)
processes. For the ARMAC(], 1) process, both the ACF and the PACF will display a
distinctive spike at lag 1 followed by an exponentially decaying pattern thereafter.

20.2.5 MODELING UNIVARIATE TIME SERIES

The preceding discussion is largely descriptive. There is no underlying economic theory
that states why a compact ARMA(p, q) representation should adequately describe the
movement of a given economic time series. Nonetheless, as a methodology for building
forecasting models, this set of tools and its empirical counterpart have proved as good as
and even superior to much more elaborate specifications (perhaps to the consternation
of the builders of large macroeconomic models).!! Box and Jenkins (1984) pioneered a
forecasting framework based on the preceding that has been used in a great many fields
and that has, certainly in terms of numbers of applications, largely supplanted the use
of large integrated econometric models.

Box and Jenkins’s approach to modeling a stochastic process can be motivated by
the following.

THEOREM 20.1 Wold’s Decomposition Theorem
Every zero mean covariance stationary stochastic process can be represented in
the form :

(o)
}’t = E*[,Vt l Yt—l, )’1—2, cees tt—p] + Znigt—i’
=0

where g, is white noise, Ty = 1, and the weights are square summable— that is,

o0
S <00
i=1

— E*[yi | Yi=1, Yi=2, .. .. Yi—p] s the optimal linear predictor of y, based on its
lagged values, and the predictor E} is uncorrelated with ¢, ;.

Thus, the theorem decomposes the process generating y; into

E" = E*[y: | yi—1, Yi-2, - . ., Yi—p] = the linearly deterministic component

HThis observation can be overstated. Even the most committed advocate of the Box-Jenkins methods would
concede that an ARMA model of, for example, housing starts will do little to reveal the link between the
interest rate policies of the Federal Reserve and their variable of interest. That is, the covariation of economic
variables remains as interesting as ever.
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and
o]
Z mi&,—; = the linearly indeterministic component.
i=0
The theorem states that for any stationary stochastic process, for a given choice of p.
there is a Wold representation of the stationary series

P oo
Ve = Z ViYe-i + Z i€
i=1 i=0

Note that for a specific ARMA(P, Q) process, if p > P, then n; = 0 fori > Q. For
practical purposes, the problem with the Wold representation is that we cannot estimate
the infinite number of parameters needed to produce the full right-hand side, and, of
course, P and @ are unknown. The compromise, then, is to base an estimate of the
representation on a model with a finite number of moving-average terms. We can seek
the one that best fits the data in hand.

It is important to note that neither the ARMA representation of a process nor the
Wold representation is unique. In general terms, suppose that the process generating

y, is
Dy, = (L.

We assume that I'(L) is finite but © (L) need not be. Let © (L) be some other polynomial
in the lag operator with roots that are outside the unit circle. Then

d(L) _ d(L)
[F(LJF(L)” - {F(m]@@)g’

or
Q(Lyy: = M(L)e,.

The new representation is fully equivalent to the old one, but it might have a different
number of autoregressive parameters, which is exactly the point of the Wold decompo-
sition. The implication is that part of the model-building process will be to determine
the lag structures. Further discussion on the methodology is given by Box and Jenkins
(1984).

The Box-Jenkins approach to modeling stochastic processes consists of the follow-
ing steps:

1. Satisfactorily transform the data so as to obtain a stationary series. This step will
usually mean taking first differences, logs, or both to obtain a series whose
autocorrelation function eventually displays the characteristic exponential decay
of a stationary series.

2. Estimate the parameters of the resulting ARMA model, generally by nonlinear
least squares.

3. Generate the set of residuals from the estimated model and verify that they
satisfactorily resemble a white noise series. If not, respecify the model and return
to step 2.

4. The model can now be used for forecasting purposes.
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Space limitations prevent us from giving a full presentation of the set of techniques.
Since this methodology has spawned a mini-industry of its own, however, there is no
shortage of book length analyses and prescriptions to which the reader may refer. Five
to consider are the canonical source, Box and Jenkins (1984), Granger and Newbold
(1986), Mills (1993), Enders (1995) and Patterson (2000). Some of the aspects of the
estimation and analysis steps do have broader relevance for our work here, so we will
continue to examine them in some detail. '

20.2.6 ESTIMATION OF THE PARAMETERS OF A UNIVARIATE
TIME SERIES

The broad problem of regression estimation with time series data, which carries through
to all the discussions of this chapter, is that the consistency and asymptotic normality
results that we derived based on random sampling will no longer apply. For example,
for a stationary series, we have assumed that Var[y,] = A¢ regardless of z. But we have
yet to establish that an estimated variance,

1 T
— _ 2
C=="7 ;21 (=9,

will converge to Ag, or anything else for that matter. It is necessary to assume that
the process is ergodic. (We first encountered this assumption in Section 12.4.1—see
Definition 12.3.) Ergodicity is a crucial element of our theory of estimation. When a
time series has this property (with stationarity), then we can consider estimation of
parameters in a meaningful sense. If the process is stationary and ergodic then, by the
Ergodic Theorem (Theorems 12.1 and 12.2) moments such as y and ¢; converge to
their population counterparts y and Xo.!? The essential component of the condition
is one that we have met at many points in this discussion, that autocovariances must
decline sufficiently rapidly as the separation in time increases. It is possible to construct
theoretical examples of processes that are stationary but not ergodic, but for practical
purposes, a stationarity assumption will be sufficient for us to proceed with estimation.
For example, in our models of stationary processes, if we assume that &; ~ N[0, 0],
which is common, then the stationary processes are ergodic as well.

Estimation of the parameters of a time-series process must begin with a determi-
nation of the type of process that we have in hand. (Box and Jenkins label this the
identification step. But identification is a term of art in econometrics, so we will steer
around that admittedly standard name.) For this purpose, the empirical estimates of the
autocorrelation and partial autocorrelation functions are useful tools.

The sample counterpart to the ACF is the correlogram,

_ ZtT=k+l O =k — ?)_
ZrTzl e —9)?

A plot of ri against k provides a description of a process and can be used to help discern
what type of process is generating the data. The sample PACF is the counterpart to the

Tk

12The formal conditions for ergodicity are quite involved; see Davidson and MacKinnon (1993) or Hamilton
(1994, Chapter 7).
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ACEF, but net of the intervening lags; that is,

T * 4,k
Zt:kﬂ Ye Yk

T * ’
Zt:kﬂ (yt—k)2

where y; and y;'_, are residuals from the regressions of y, and y,_xon [1, y,_1, 2, ...,
Yi—k+1]. We have seen this at many points before; rf is simply the last linear least squares
regression coefficient in the regression of y, on [1, yi—1, Yi—2. ..., Y11, ¥r—&]- Plots of
the ACF and PACF of a series are usually presented together. Since the sample estimates
of the autocorrelations and partial autocorrelations are not likely to be identically zero
even when the population values are, we use diagnostic tests to discern whether a time
series appears to be nonautocorrelated.!® Individual sample autocorrelations will be
approximately distributed with mean zero and variance 1/ T under the hypothesis that
the series is white noise. The Box—Pierce (1970) statistic

p
0=T> i
k=1

is commonly used to test whether a series is white noise. Under the null hypothesis
that the series is white noise, @ has a limiting chi-squared distribution with p degrees
of freedom. A refinement that appears to have better finite-sample properties is the
Ljung-Box (1979) statistic,

*_
rk—

2

P
Q=TT+ .
k=1

T—k

The limiting distribution of Q’ is the same as that of Q.

The process of finding the appropriate specification is essentially trial and error. An
initial specification based on the sample ACF and PACF can be found. The parameters
of the model can then be estimated by least squares. For pure AR(p) processes, the
estimation step is simple. The parameters can be estimated by linear least squares.
If there are moving-average terms, then linear least squares is inconsistent, but the
parameters of the model can be fit by nonlinear least squares. Once the model has been
estimated, a set of residuals is computed to assess the adequacy of the specification. In
an AR model, the residuals are just the deviations from the regression line.

The adequacy of the specification can be examined by applying the foregoing tech-
niques to the estimated residuals. If they appear satisfactorily to mimic a white noise
process, then analysis can proceed to the forecasting step. If not, a new specification
should be considered.

Example 20.1 ACF and PACF for a Series of Bond Yields

Appendix Table F20.1 lists 5 years of monthly averages of the yield on a Moody’s Aaa rated
corporate bond. The series is plotted in Figure 20.1. From the figure, it would appear that
stationarity may not be a reasonable assumption. We will return to this question below. The
ACF and PACF for the original series are shown in Table 20.1, with the diagnostic statistics
discussed earlier.

The plots appear to be consistent with an AR(2) process, although the ACF at longer
lags seems a bit more persistent than might have been expected. Once again, this condition

13The LM test discussed in Section 12.7.1 is one of these.
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may indicate that the series is not stationary. Maintaining that assumption for the present,
we computed the residuals from the AR(2) model and subjected them to the same tests as
the original series. The coefficients of the AR(2) model are 1.1566 and —0.2083, which also
satisfy the restrictions for stationarity given in Section 20.2.2. Despite the earlier suggestions,
the residuals do appear to resemble a white noise series (Table 20.2).

1.00

0.95 g ®

085F

Yield (x10)

0.80 |- s, .

0.75 F ., o

0.70 F U S—

0655
1990.1

1992.6 1993.4 1994.2 1994.12

Month

1990.10 1991.8

ABLE 20.1  ACF and PAC

Time-series identification for YIELD

Box—Pierce statistic =323.0587

Degrees of freedom =14

Significance level = 0.0000

& — |coefficient| > 2/sqrt(N) or > 95% significant

Box-Ljung Statistic =317.4389
Degrees of freedom = 14
Significance level = 0.0000

Autocorrelation Function Partial Autocorrelations
Lag -1 0 +1 | Box-Pierce -1 0 +1
1 0.970¢ ] 56.42¢ 0.970e ]
2 0.908e ] 105.93¢ —0.573¢ .
3 0.840¢ ] 148.29¢ 0.157 [ |
4 0.775« | 184.29¢ -0.043 |
5 0.708¢ I 214.35¢ —0.309¢ |
6 0.636¢ || 238.65¢ —0.024 |
7 0.567 | 257.93¢ —0.037 1
8 0.501e . 272.97¢ 0.059 1
9 0.439¢ . 284.51e —0.068 1
10 0.395¢ || 293.85¢ 0.216 |
11 0.370¢ | 302.08¢ —0.180 |
12 0.354¢ || 309.58¢ 0.048 1
13 0.339¢ | 316.48¢ 0.162 ]
14 0.331e | 323.06¢ 0.171 n
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TABLE 20.2 ACF and PAC

Time-series identification for U

Box-Pierce statistic=13.7712 Box-Ljung statistic =16.1336
Significance level = 0.4669 Significance level = 0.3053
* — |coefficient| > 2/sqrt(N) or > 95% significant
Autocorrelation Function Partial Autocorrelations
Lag -1 0 +1 Box—Pierce -1 0 +1
1 0.154 | 1.38 0.154 N
2 —0.147 [ | 2.64 —-0.170 |
3 —0.207 | 5.13 -0.179 |
4 0.161 | 6.64 0.183 |
5 0.117 [ | 7.43 0.068 1
6 0.114 | 8.18 0.094 |
7 -0.110 | 8.89 —0.066 1
8 0.041 | 8.99 0.125 [ |
9 —0.168 [ | 10.63 —0.258 ]
10 0.014 I 10.64 0.035 I
11 -0.016 ] 10.66 0.015 I
12 —0.009 I 10.66 —0.089 ]
13 —-0.195 | 12.87 —0.166 |
14 -0.125 | 13.77 0.132 |

20.2.7 THE FREQUENCY DOMAIN

For the analysis of macroeconomic flow data such as output and consumption, and
aggregate economic index series such as the price level and the rate of unemploy-
ment, the tools described in the previous sections have proved quite satisfactory. The
low frequency of observation (yearly, quarterly, or, occasionally, monthly) and very
significant aggregation (both across time and of individuals) make these data rela-
tively smooth and straightforward to analyze. Much contemporary economic analysis,
especially financial econometrics, has dealt with more disaggregated, microlevel data.
observed at far greater frequency. Some important examples are stock market data for
which daily returns data are routinely available, and exchange rate movements, which
have been tabulated on an almost continuous basis. In these settings, analysts have found
that the tools of spectral analysis, and the frequency domain, have provided many use-
ful results and have been applied to great advantage. This section introduces a small
amount of the terminology of spectral analysis to acquaint the reader with a few basic
features of the technique. For those who desire further detail, Fuller (1976), Granger and
Newbold (1996), Hamilton (1994), Chatfield (1996), Shumway (1988), and Hatanaka
(1996) (among many others with direct application in economics) are excellent intro-
ductions. Most of the following is based on Chapter 6 of Hamilton (1994).

In this framework, we view an observed time serics as a weighted sum of underlying
series that have different cyclical patterns. For example, aggregate retail sales and con-
struction data display several different kinds of cyclical variation, including a regular
seasonal pattern and longer frequency variation associated with variation in the econ-
omy as a whole over the business cycle. The total variance of an observed time series
may thus be viewed as a sum of the contributions of these underlying series, which vary
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at different frequencies. The standard application we consider is how spectral analysis
is used to decompose the variance of a time series.

20.2.7.a. Theoretical Results
Let {y;}i=—0,00 define a zero mean, stationary time-series process. The autocovariance
at lag k was defined in Section 20.2.2 as

Ak = Ak = Cov[y:, Yi—i]-

We assume that the series Ay is absolutely summable; 32 |1«| is finite. The autocovari-
ance generating function for this time-series process is

gr(@ =Y mh

k=—00

We evaluate this function at the complex value z = exp(iw), where i = /-1 and wis a
real number, and divide by 27 to obtain the spectrum, or spectral density function, of
the time-series process,

hy(w) = % ( Z xke—iwk) ) (20-16)

k=—00

The spectral density function is a characteristic of the time-series process very much
like the sequence of autocovariances (or the sequence of moments for a probability
distribution). For a time-series process that has the set of autocovariances i, the spectral
density can be computed at any particular value of w. Several results can be combined
to simplify Ay(w):

1. Symmetry of the autocovariances, Ay = A_g;

2. DeMoivre’s theorem, exp(E iwk) = cos(wk) £ i sin(wk);

3. Polar values, cos(0) = 1, cos(x) = 0, sin(0) = 0, sin(x) = 1;

4. Symmetries of sin and cos functions, sin(—w) = — sin(w) and cos(—w) = cos(w).

One of the convenient consequences of result 2 is exp(iwk) + exp(—iwk) = 2 cos(wk),
which is always real. These equations can be combined to simplify the spectrum.

Ao +2 Z Ax cos(a)k)] , wel0,m]. (20-17)

1
hy(w) = Z
k=1

This is a strictly real-valued, continuous function of w. Since the cosine function is
cyclic with period 27, hy(w) = hy(w + M2x) for any integer M, which implies that the
entire spectrum is known if its values for o from 0 to 7 are known. [Since cos(—w) =
cos(w), hy(w) = hy(—w), so the values of the spectrum for w from 0 to —7 are the same
as those from 0 to +x.] There is also a correspondence between the spectrum and the
autocovariances,

A = /]r hy(w) cos(kw) dw,

which we can interpret as indicating that the sequence of autocovariances and the
spectral density function just produce two different ways of looking at the same
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time-series process (in the first case, in the “time domain,” and in the second case,
in the “frequency domain,” hence the name for this analysis).

The spectral density function is a function of the infinite sequence of autocovari-
ances. For ARMA processes, however, the autocovariances are functions of the usually
small numbers of parameters, so hy(w) will generally simplify considerably. For the
ARMA(p, q) process defined in (20-6),

=) =11 — )+ Y rp — )+ & — 018121 — - — Oy

or

DDy — ) = O(Dey,
the autocovariance generating function is

_fe@ed/)
gv(z) = W = o M(2)I1(1/2),

where T1(z) gives the sequence of coefficients in the infinite moving-average represen-
tation of the series, ©(2)/ I'(z). See, for example, (201), where this result is derived for
the ARMA(2, 1) process. In some cases, this result can be used explicitly to derive
the spectral density function. The spectral density function can be obtained from this
relationship through

o2

2

Example 20.2 Spectral Density Function for an AR(1) Process
For an AR(1) process with autoregressive parameter p, y; = py:_1 + &, & ~ N[O, 1], the lag
polynomials are ®(z) = 1 and I'(z) = 1 — pz. The autocovariance generating function is

hy(w) = —TI(e7*)[1(e'®).

0,2

(1=02)(1 —p/2)

0,2

1+p2—pz+1/2)

_ a? i 0 / 1+22i
IRy 1+ p2 z )

i=0

gv(2) =

The spectral density function is

o? 1 o? 1
hY(w) = 5_ f . =57 P .
27 [1 - pexp(—iw)][1 —pexplio)] 27 [1 + p2 —2p cos(w)]

For the general case suggested at the outset, I'(L)(y; — u) = O(L)g;, there is a
template we can use, which, if not simple, is at least transparent. Let «; be the reciprocal
of a root of the characteristic polynomial for the autoregressive part of the model,
I(a;) =0,i =1,...,p,and let §;, j = 1,..., g, be the same for the moving-average
part of the model. Then

o T19-, [1+ 67 —28; cos(w)]

) = e T [T+ @ = 201 cos@)]
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Some of the roots of either polynomial may be complex pairs, but in this case, the
product for adjacent pairs (a & bi) is real, so the function is always real valued. [Note
also that (a £ bi)™' = (a T bi)/(a® + b?).]

For purposes of our initial objective, decomposing the variance of the time series,
our final useful theoretical result is

/ hy(w)dw = Ag.

Thus, the total variance can be viewed as the sum of the spectral densities over all
possible frequencies. (More precisely, it is the area under the spectral density.) Once
again exploiting the symmetry of the cosine function, we can rewrite this equation in
the form

2/ hy(w)dw = .
0

Consider, then, integration over only some of the frequencies;

w;
= hy(w) do = 1(wj), 0<w; <7 0<t(w;) <1
0 Jo
Thus, 7(w;) can be interpreted as the proportion of the total variance of the time series
that is associated with frequencies less than or equal to w;.

20.2.7.b. Empirical Counterparts
We have in hand a sample of observations, y,, ¢ = 1, ..., T. The first task is to establish
a correspondence between the frequencies 0 < w <7 and something of interest in the
sample. The lowest frequency we could observe would be once in the entire sample
period, so we map wi to 27/ T. The highest would then be wr = 27, and the intervening
values will be 27;/T, j = 2,..., T — 1. It may be more convenient to think in terms
of period rather than frequency. The number of periods per cycle will correspond to
T/j = 2r/w;. Thus, the lowest frequency, w, corresponds to the highest period, T
“dates” (months, quarters, years, etc.).

There are a number of ways to estimate the population spectral density function.
The obvious way is the sample counterpart to the population spectrum. The sample of
T observations provides the variance and T — 1 distinct sample autocovariances

1 & 1<
Ck=C_k=7_‘ Z(yt_j’)()’t—k—j’), y:?zy[s k:O,l,...,T—l,
t=k+1 t=1

so we can compute the sample periodogram, which is

hy(w) = 5—
n

T-1
co+2 Z Ck cos(wk)Zl .

k=1

The sample periodogram is a natural estimator of the spectrum, but it has a statisti-
cal flaw. With the sample variance and the T — 1 autocovariances, we are estimating
T parameters with T observations. The periodogram is, in the end, T transformations
of these T estimates. As such, there are no “degrees of freedom”; the estimator does
not improve as the sample size increases. A number of methods have been suggested
for improving the behavior of the estimator. Two common ways are truncation and
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windowing [see Chatfield (1996, pp. 139-143)]. The truncated estimator of the peri-
odogram is based on a subset of the first L. < T autocovariances. The choice of L is a
problem because there is no theoretical guidance. Chatfield (1996) suggests L approxi-
mately equal to 2+/7 is large enough to provide resolution while removing some of the
sampling variation induced by the long lags in the untruncated estimator. The second
mechanism for improving the properties of the estimator is a set of weights called a lag
window. The revised estimator is

, 1 L
hy(w) = ZT— woCo + 2 kzz; WiCk COS(wk)J s
where the set of weights, {wy. k = 0,..., L}, is the lag window. One choice for the

weights is the Bartlett window, which produces

L

hy Bartlew (@) = 51; [co + ZkZI w(k, L)cg cos(a)k)} , wk, L)y=1- —L—lj_—l
Note that this result is the same set of weights used in the Newey—West robust covariance
matrix estimator in Chapter 12, with essentially the same motivation. Two others that
are commonly used are the Tukey window, which has wy = %[1 + cos(wk/L)], and the
Parzen window, wy = 1—6[(k/L)>—(k/L)?],if k < L/2, and wy = 2(1—k/L)? otherwise.
If the series has been modeled as an ARMA process, we can instead compute the
fully parametric estimator based on our sample estimates of the roots of the autore-

gressive and moving-average polynomials. This second estimator would be

6_2 H;I':1 [1 + d]2» —2d; COS(a)k)]
27 17 [1+ af — 2a; cos(wk)]
Others have been suggested. [See Chatfield (1996, Chap. 7).]

Finally, with the empirical estimate of the spectrum, the variance decomposition
can be approximated by summing the values around the frequencies of interest.

hy arma (@) =

Example 20.3 Spectral Analysis of the Growth Rate of Real GNP
Appendix Table F20.2 lists guarterly observations on U.S. GNP and the implicit price defla-
tor for GNP for 1950 through 1983. The GNP series, with its upward trend, is obviously
nonstationary. We will analyze instead the quarterly growth rate, 100[log(GNP,/price;) —
I0g(GNP;_+/price;_1)]. Figure 20.2 shows the resulting data. The differenced series has 135
observations.

Figure 20.3 plots the sample periodogram, with frequencies scaled so that w; = (j/T)2x.
The figure shows the sample periodogram for j = 1, ..., 67 (since values of the spectrum
for j = 68, ..., 134) are a mirror image of the first half, we have omitted them). Figure 20.3
shows peaks at several frequencies. The effect is more easily visualized in terms of the periods
of these cyclical components. The second row of labels shows the periods, computed as
quarters = T/(2f), where T = 67 quarters. There are distinct masses around 2 to 3 years
that correspond roughly to the “business cycle” of this era. One might also expect seasonal
effects in these quarterly data, and there are discernible spikes in the periodogram at about
0.3 year (one quarter). These spikes, however, are minor compared with the other effects in the
figure. This is to be expected, because the data are seasonally adjusted already. Finally, there
is a pronounced spike at about 6 years in the periodogram. The original data in Figure 20.2
do seem consistent with this result, with substantial recessions coming at intervals of 5 to 7
years from 1953 to 1980.

To underscore these results, consider what we would obtain if we analyzed the original
(log) real GNP series instead of the growth rates. Figure 20.4 shows the raw data. Although
there does appear to be some short-run (high-frequency) variation (around a long-run trend,
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for example), the cyclical variation of this series is obviously dominated by the upward trend.
If this series were viewed as a single periodic series, then we would surmise that the period of
this cycle would be the entire sample interval. The frequency of the dominant part of this time
series seems to be quite close to zero. The periodogram for this series, shown in Figure 20.5,
is consistent with that suspicion. By far, the largest component of the spectrum is provided
by frequencies close to zero.

FIGURE 20.2 Growth Rate of U.S. Real GNP, Quarterly, 1953
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A Computational Note The computation in (20-16) or (20-17) is the discrete Fourier
transform of the series of autocovariances. In principle, it involves an enormous amount
of computation, on the order of T? sets of computations. For ordinary time series in-
volving up to a few hundred observations, this work is not particularly onerous. (The
preceding computations involving 135 observations took a total of perhaps 20 seconds of
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computing time.) For series involving multiple thousands of observations, such as daily
market returns, or far more, such as in recorded exchange rates and forward premiums,
the amount of computation could become prohibitive. However, the computation can
be done using an important tool, the fast Fourier transform (FFT), that reduces the
computational level to O(T log, T), which is many orders of magnitude less than 772,
The FFT is programmed in some econometric software packages, such as RATS and
Matlab. [See Press et al. (1986) for further discussion.]

20.3 NONSTATIONARY PROCESSES
AND UNIT ROOTS

Most economic variables that exhibit strong trends, such as GDP, consumption, or the
price level, are not stationary and are thus not amenable to the analysis of the previous
section. In many cases, stationarity can be achieved by simple differencing or some
other transformation. But, new statistical issues arise in analyzing nonstationary series
that are understated by this superficial observation.

20.3.1 INTEGRATED PROCESSES AND DIFFERENCING

A process that figures prominently in recent work is the random walk with drift,

Ye=p+ Y1+ &1

By direct substitution,
. ;
Yo=Y (u+e).
i=0

That is, y, is the simple sum of what will eventually be an infinite number of random
variables, possibly with nonzero mean. If the innovations are being generated by the
same zero-mean, constant-variance distribution, then the variance of y, would obviously
be infinite. As such, the random walk is clearly a nonstationary process, even if u equals
zero. On the other hand, the first difference of y,, ~

=Y —YV-1= U+ &,

issimply the innovation plus the mean of z;, which we have already assumed is stationary.

The series y; is said to be integrated of order one, denoted (1), because taking a
first difference produces a stationary process. A nonstationary series is integrated of
order d, denoted I(d), if it becomes stationary after being first differenced d times. A
further generalization of the ARMA model discussed in Section 20.2.1 would be the
series

z=(1- L)d)’t = Ad)’t-
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The resulting model is denoted an autoregressive integrated moving-average model, or
ARIMA (p, d, g)."* In full, the model would be

Ay =p+ Ay + ATy e+ ypA"y,_p +& —tg_— =05,
where
Ay, =y —y1=0 - LDy
This result may be written compactly as
CDIA = L'y ] = u+ D(Ler,

where C(L) and D(L) are the polynomials in the lag operator and (1 — L)%y, = A%y, is
the dth difference of y;.

An I(1) seriesinits raw (undifferenced) form will typically be constantly growing, or
wandering about with no tendency to revert to a fixed mean. Most macroeconomic flows
and stocks that relate to population size, such as output or employment, are /(1). An
I(2) series is growing at an ever-increasing rate. The price-level data in Appendix Table
F20.2 and shown below appear to be 1(2). Series that are /(3) or greater are extremely
unusual, but they do exist. Among the few manifestly 7(3) series that could be listed, one
would find, for example, the money stocks or price levels in hyperinflationary economies
such as interwar Germany or Hungary after World War I1.

Example 20.4 A Nonstationary Series
The nominal GDP and price deflator variables in Appendix Table F20.2 are strongly trended,
so the mean is changing over time. Figures 20.6 through 20.8 plot the log of the GDP deflator
series in Table F20.2 and its first and second differences. The original series and first differ-
ences are obviously nonstationary, but the second differencing appears to have rendered the
series stationary.

The first 10 autocorrelations of the log of the GDP deflator series are shown in Table 20.3.
The autocorrelations of the original series show the signature of a strongly trended, nonsta-
tionary series. The first difference also exhibits nonstationarity, because the autocorrelations
are still very large after a lag of 10 periods. The second difference appears to be stationary,
with mild negative autocorrelation at the first lag, but essentially none after that. Intuition
might suggest that further differencing would reduce the autocorrelation further, but it wouid
be incorrect. We leave as an exercise to show that, in fact, for values of y less than about
0.5, first differencing of an AR(1) process actually increases autocorrelation.

20.3.2 RANDOM WALKS, TRENDS, AND SPURIOUS REGRESSIONS

In a seminal paper, Granger and Newbold (1974) argued that researchers had not paid
sufficient attention to the warning of very high autocorrelation in the residuals from
conventional regression models. Among their conclusions were that macroeconomic
data, as a rule, were integrated and that in regressions involving the levels of such data,
the standard significance tests were usually misleading. The conventional ¢t and F tests
would tend to reject the hypothesis of no relationship when, in fact, there might be none.

4There are yet further refinements one might consider, such as removing seasonal effects from z; by differ-
encing by quarter or month. See Harvey (1990) and Davidson and MacKinnon (1993). Some recent work has
relaxed the assumption that d is an integer. The fractionally integrated series, or ARFIMA has been used to
model series in which the very long-run multipliers decay more slowly than would be predicted otherwise.
See Section 20.3.5.



CHAPTER 20 4 Time-Series Models 633

5.40

520L . j /
5.00 /

Logprice

e P G S S NN SR S S S S | TN U

1964 1971 1978 1985
Quarter

IGURE 20.6 Quarterly Data on log GDP Deflator.

1950 1957

0300

0258 |

0215

0172}

[NV

o0
2
=

[
.0129

.0086 |

T

0043 |

T

0000
1950 1957

PR S R T T S S T IO T S S S S

The general result at the center of these findings is that conventional linear regression,
ignoring serial correlation, of one random walk on another is virtually certain to suggest
asignificant relationship, even if the two are, in fact, independent. Among their extreme
conclusions, Granger and Newbold suggested that researchers use a critical ¢ value
of 11.2 rather than the standard normal value of 1.96 to assess the significance of a
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ABLE 20.3 Autocorrelations for In GNP Deflator

Autocorrelation Function Autocorrelation Function Autocorrelation Function

Lag Original Series, log Price First Difference of log Price | Second Difference of log Price

1 1.000 I 0.812 I | - 0.395 [ |

2 1.000 I |  0.765 I 0112 |

3 0.999 I 0.776 ] 0.258 |

4 0.999 I 0.682 [ —-0.101 ]

5 0.999 I 0.631 | ] -0.022 |

6 0.998 P  0.592 ] 0.076 1

7 0.998 IR 0.523 . —0.163 |

8 0.997 I 0.513 | 0.052 1

9 0.997 I 0.488 | -0.054 1
10 0.997 I 0.491 . 0.062 1

coefficient estimate. Phillips (1986) took strong issue with this conclusion. Based on

a more general model and on an analytical rather than a Monte Carlo approach, he

suggested that the normalized statistic ¢4/ VT be used for testing purposes rather than

tg itself. For the 50 observations used by Granger and Newbold, the appropriate critical

value would be close to 15! If anything, Granger and Newbold were too optimistic.
The random walk with drift,

Z=pn+ -1t 8, ‘ (20-18)
and the trend stationary process,

z=u+ Pt +e, : (20-19)



CHAPTER 20 4 Time-Series Models 635

where, in both cases, u, is a white noise process, appear to be reasonable characteriza-
tions of many macroeconomic time series.!> Clearly both of these will produce strongly
trended, nonstationary series,'® so it is not surprising that regressions involving such
variables almost always produce significant relationships. The strong correlation would
seem to be a consequence of the underlying trend, whether or not there really is any
regression at work. But Granger and Newbold went a step further. The intuition is less
clear if there is a pure random walk at work,

=21+ &, (20-20)

but even here, they found that regression “relationships” appear to persist even in
unrelated series.

Each of these three series is characterized by a unit reot. In each case, the data-
generating process (DGP) can be written

(1-DLz=a+s, (20-21)

whereo = u, 8,and 0, respectively, and v, is a stationary process. Thus, the characteristic
equation has a single root equal to one, hence the name. The upshot of Granger and
Newbold's and Phillips’s findings is that the use of data characterized by unit roots has
the potential to lead to serious errors in inferences.

In all three settings, differencing or detrending would seem to be a natural first
step. On the other hand, it is not going to be immediately obvious which is the correct
way to proceed —the data are strongly trended in all three cases—and taking the incor-
rect approach will not necessarily improve matters. For example, first differencing in
(20-18) or (20-20) produces a white noise series, but first differencing in (20-19) trades
the trend for autocorrelation in the form of an MA(1) process. On the other hand,
detrending—that is, computing the residuals from a regression on time—is obviously
counterproductive in (20-18) and (20-20), even though the regression of z, on a trend
will appear to be significant for the reasons we have been discussing, whereas detrending
in (21-19) appears to be the right approach.!” Since none of these approaches is likely
to be obviously preferable at the outset, some means of choosing is necessary. Consider
nesting all three models in a single equation,

Z=p+pt+z1+e.

Now subtract z,_; from both sides of the equation and introduce the artificial
parameter y.

Z—Za=py +Pyt+(y - Dz + &

(20-22)
=apt+ot+(y — Dz +ear.

I3The analysis to follow has been extended to more general disturbance processes, but that complicates
matters substantially. In this case, in fact, our assumption does cost considerable generality, but the extension
is beyond the scope of our work. Some references on the subject are Phillips and Perron (1988) and Davidson
and MacKinnon (1993).

18The constant term g produces the deterministic trend in the random walk with drift. For convenience,
suppose that the process starts at time zero. Then z; = Z:_O(u + &) = ut + Z;:[, 5. Thus, z; consists of
a deterministic trend plus a stochastic trend consisting of the sum of the innovations. The result is a variable
with increasing variance around a linear trend.

17See Nelson and Kang (1984).
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where, by hypothesis, y = 1. Equation (20-22) provides the basis for a variety of tests
for unit roots in economic data. In principle, a test of the hypothesis that y — 1 equals
zero gives confirmation of the random walk with drift, since if y equals 1 (and o equals
zero), then (20-18) results. If y — 1 is less than zero, then the evidence favors the trend
stationary (or some other) model, and detrending (or some alternative) is the preferable
approach. The practical difficulty is that standard inference procedures based on least
squares and the familiar test statistics are not valid in this setting. The issue is discussed
in the next section.

20.3.3 TESTS FOR UNIT ROOTS IN ECONOMIC DATA

The implications of unit roots in macroeconomic data are, at least potentially, profound.
If a structural variable, such as real output, is truly 7(1), then shocks to it will have per-
manent effects. If confirmed, then this observation would mandate some rather serious
reconsideration of the analysis of macroeconomic policy. For example, the argument
that a change in monetary policy could have a transitory effect on real output would
vanish.!® The literature is not without its skeptics, however. This result rests on a razor’s
edge. Although the literature is thick with tests that have failed to reject the hypothesis
that y = 1, many have also not rejected the hypothesis that y > 0.95, and at 0.95 (or
even at 0.99), the entire issue becomes moot."
Consider the simple AR(1) model with zero-mean, white noise innovations,

Yi=VYY-1+ &

The downward bias of the least squares estimator when y approaches one has been
widely documented.” For |y| < 1, however, the least squares estimator

_ Zthz Y Yi-1
c=T"F5
thz Vi1
does have
plimc=y
and

JT(c —y) -5 N[0,1 - 7.

Does the result hold up if y = 1? The case is called the unit root case, since in the ARMA
representation C(L)y; = ¢, the characteristic equation 1 — yz = 0 has one root equal
to one. That the limiting variance appears to go to zero should raise suspicions. The
literature on the questions dates back to Mann and Wald (1943) and Rubin (1950). But
for econometric purposes, the literature has a focal point at the celebrated papers of

18The 1980s saw the appearance of literally hundreds of studies, both theoretical and applied, of unit roots
in economic data. An important example is the seminal paper by Nelson and Plosser (1982). There is little
question but that this observation is an early part of the radical paradigm shift that has occurred in empirical
macroeconomics.

19 A large number of issues are raised in Maddala (1992, pp. 582-588).

20gee, for example, Evans and Savin (1981, 1984).
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Dickey and Fuller (1979, 1981). They showed that if y equals one, then
T(c—1y) LN v,

where v is a random variable with finite, positive variance, and in finite samples,
E[c] <12

There are two important implications in the Dickey-Fuller results, First, the estima-
tor of y is biased downward if y equals one. Second, the OLS estimator of y converges
to its probability limit more rapidly than the estimators to which we are accustomed.
That is, the variance of ¢ under the null hypothesis is O(1/T?), not O(1/T). (In a
mean squared error sense, the OLS estimator is superconsistent.) It turns out that the
implications of this finding for the regressions with trended data are considerable.

We have already observed that in some cases, differencing or detrending is required
to achieve stationarity of a series. Suppose, though, that the AR(1) model above is fit
to an (1) series, despite that fact. The upshot of the preceding discussion is that the
conventional measures will tend to hide the true value of y; the sample estimate is biased
downward, and by dint of the very small true sampling variance, the conventional ¢ test
will tend, incorrectly, to reject the hypothesis that y = 1. The practical solution to this
problem devised by Dickey and Fuller was to derive, through Monte Carlo methods,
an appropriate set of critical values for testing the hypothesis that y equals one in an
AR(1) regression when there truly is a unit root. One of their general results is that the
test may be carried out using a conventional ¢ statistic, but the critical values for the
test must be revised; the standard ¢ table is inappropriate. A number of variants of this
form of testing procedure have been developed. We will consider several of them.

20.3.4 THE DICKEY-FULLER TESTS
The simplest version of the of the model to be analyzed is the random walk
Vi =yVi—1+&, &~ N|O, 02] and Covle, &] =0Vt #5.
Under the null hypothesis that y = 1, there are two approaches to carrying out the test.
The conventional ¢ ratio
y—1
Est.Std.Error(p)

with the revised set of critical values may be used for a one-sided test. Critical values for
this test are shown in the top panel of Table 20.4. Note that in general, the critical value
is considerably larger in absolute value than its counterpart from the ¢ distribution. The
second approach is based on the statistic

DF[ =

DF, = T(j — 1).

Critical values for this test are shown in the top panel of Table 20.4.

The simple random walk model is inadequate for many series. Consider the rate
of inflation from 1950.2 to 2000.4 (plotted in Figure 20.9) and the log of GDP over the
same period (plotted in Figure 20.10). The first of these may be a random walk, but it is

21 A full derivation of this result is beyond the scope of this book. For the interested reader, a fairly compre-
hensive treatment at an accessible level is given in Chapter 17 of Hamilton (1994, pp. 475-542).
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DFz
Sample Size

25 50 100 o0
F ratio (D-F)* 7.24 6.73 6.49 6.25
F ratio (standard) 3.42 3.20 3.10 3.00
AR model® (random walk)
0.01 —2.66 —-2.62 —-2.60 —2.58
0.025 —2.26 -2.25 —2.24 —2.23
0.05 —1.95 -1.95 -1.95 -1.95
0.10 -1.60 -1.61 -1.61 -1.62
0.975 1.70 1.66 1.64 1.62
AR model with constant (random walk with drift)
0.01 —3.75 -3.59 -3.50 —-3.42
0.025 —-3.33 -3.23 -3.17 -3.12
0.05 —2.99 -2.93 —-2.90 -2.86
0.10 —2.64 —-2.60 —2.58 -2.57
0.975 0.34 0.29 0.26 023
AR model with constant and time trend (trend stationary)
0.01 —4.38 —4.15 —4.04 —3.96
0.025 -3.95 —-3.80 -3.69 —3.66
0.05 -3.60 -3.50 -3.45 -3.41
0.10 -3.24 -3.18 -3.15 —-3.13
0.975 -0.50 —0.58 -0.62 -0.66

aFrom Dickey and Fuller (1981, p.

1063). Degrees of freedom are 2 and T — p — 3.
bFrom Fuller (1976, p. 373 and 1996, Table 10.A.2).
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clearly drifting. The log GDP series, in contrast, has a strong trend. For the first of these,
a random walk with drift may be specified,

=p+2z, L =yu-1t¢&
or
yo=pl=y)+yy+e.
For the second type of series, we may specify the trend stationary form,
Ve=p+pt+z, u=yvu1té&
or
yo=[ud-=v)+vBl+BA—y)+yy-1+e.

The tests for these forms may be carried out in the same fashion. For the model with
drift only, the center panels of Tables 20.4 and 20.5 are used. When the trend is included,
the lower panel of each table is used.

Example 20.5 Tests for Unit Roots
In Section 19.6.8, we examined Cecchetti and Rich’s study of the effect of recent monetary
policy on the U.S. economy. The data used in their study were the following variables:

7 = one period rate of inflation = the rate of change in the CP!
y = log of real GDP
i = nominal interest rate = the quarterly average yield on a 90 day T-bill

Am = change in the log of the money stock, M1
i —m = ex post real interest rate
Am — n = real growth in the money stock.
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Fuller DF, Test
Sample Size
25 50 100 o0
AR model® (random walk)
0.01 -11.8 -12.8 . —-13.3 -13.8
0.025 -93 -9.9 -10.2 -10.5
0.05 =73 = 7.7 -7.9 -8.1
0.10 -53 -55 -5.6 -5.7
0.975 1.78 1.69 165 1.60
AR model with constant (random walk with drift)
0.01 -17.2 . -18.9 -19.8 —-20.7
0.025 —14.6 —-15.7 -16.3 -16.9
0.05 -12.5 -13.3 -13.7 —-14.1
0.10 -10.2 -10.7 -11.0 —-11.3
0.975 0.65 0.53 0.47 . 0.41
AR model with constant and time trend (trend stationary)
0.01 -22.5 -25.8 274 -29.4
0.025 -20.0 -22.4 237 244
0.05 -17.9 -19.7 —20.6 —21.7
0.10 -15.6 -16.8 -17.5 —183
0.975 -1.53 -1.667 —1.74 —1.81

aFrom Fuller (1976, p. 373 and 1996, Table 10.A.1).

Data used in their analysis were from the period 1959.1 to 1997.4. As part of their analysis,
they checked each of these series for a unit root and suggested that the hypothesis of a unit
root could only be rejected for the last two variables. We will reexamine these data for the
longer interval, 1950.2 to 2000.4. The data are in Appendix Table F5.1. Figures 20.111020.14
show the behavior of the last four variables. The first two are shown above in Figures 20.9
and 20.10. Only the real output figure shows a strong trend, so we will use the random walk
with drift for all the variables except this one.

The Dickey—Fuller tests are carried out in Table 20.6. There are 202 observations used in
each one. The first observation is lost when computing the rate of inflation and the change
in the money stock, and one more is lost for the difference term in the regression. The
critical values from interpolating to the second row, last column in each panel for 95 percent
significance and a one tailed test are —3.70 and —24.2, respectively for DF. and DF, for the
output equation, which contains the time trend and —3.14 and —16.8 for the other equations
which contain a constant but no trend. For the output equation (y), the test statistics are

09584940384 — 1

.= =-2. -3.
DF 1017880922 32> -3.44

and
DF, = 202(0.9584940384 — 1) = —8.38 > —21.2.

Neither is less than the critical value, so we conclude (as have others) that there is a unit root
in the log GDP process. The results of the other tests are shown in Table 20.6. Surprisingly,
these results do differ sharply from those obtained by Cecchetti and Rich (2001) for and
Am. The sample period appears to matter; if we repeat the computation using Cecchetti
and Rich’s interval, 1959.4 to 1997.4, then DF, equals —3.51. This is borderline, but less
contradictory. For Am we obtain a value of —4.204 for DF, when the sample is restricted to
the shorter interval.



y 7 CHAPTER 20 4+ Time-Series Modeils 641

T-bill Rate

L . L , I . .
1950 1963 1976 1989 2002
Quarter

A M1
Y
T

1950 1963 1976 1989 2002
Quarter




N

642 CHAPTER 20 4+ Time-Series Models

Real Interest Rate

15

10}

—10f
H

-15L
1950

1976
Quarter

i
1989

2002

A Real M1

107

MA

1

-20L
1950

1963

1976
Quarter

1989

2002




CHAPTER 20 4 Time-Series Models 643

0.6 Unit Ro «(Standard er f estimates in pare Ses)
i B y DF, DF, Conclusion

T, 0.332 0.659 —6.40 —68.88 Reject Hy
(0.0696) '(0.0532) R2 =0.432, s = 0.643

y 0.320 0.00033 0.958 —-2.35 —8.48 Do not reject Hy
(0.134) (0.00015) (0.0179) R? =0.999, s = 0.001

i 0.228 0.961 —2.14 —7.88 Do not reject Hy
(0.109) (0.0182) R>=0.933,s =(0.743

Am 0.448 0.596 —7.05 —81.61 Reject Hy
(0.0923) (0.0573) R =0.351,5s =0.929

i-m 0.615 0.557 —7.57 —89.49 Reject Hy
(0.185) (0.0585) R =0311,s =2.395

Am—m 0.0700 0.490 -8.25 —103.02 Reject Hy

(0.0833) (0.0618)  R2=0.239,s =1.176

The Dickey-Fuller tests described above assume that the disturbances in the model
as stated are white noise. An extension which will accommodate some forms of serial
correlation is the augmented Dickey-Fuller test. The augmented Dickey-Fuller test is
the same one as above, carried out in the context of the model

Yw=u+Bt+yy1+nAy_1+--+¥YpAy—p+ &

The random walk form is obtained by imposing © = 0 and g = 0; the random walk
with drift has 8 =0; and the trend stationary model leaves both parameters free. The
two test statistics are

_ p-1
* 7 Est.Std.Error()
exactly as constructed before and
T -1
DE, = ! @-1 _
1—=P1— =7

The advantage of this formulation is that it can accommodate higher-order autoregres-
sive processes in ¢,.

An alternative formulation may prove convenient. By subtracting y;_; from both
sides of the equation, we obtain

p-1
Ay = p+ Y yio1 + Z¢jAYz—j + &,
j=1 /

where

p P
¢j=—> w and y*= (ZM) - L

k=j+1 i=1
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The unit root test is carried out as before by testing the null hypothesis y* =0 against
y* <0.2? The ¢ test, DF, may be used. If the failure to reject the unit root is taken
as evidence that a unit root is present, i.e., y* =0, then the model specializes to the
AR(p — 1) model in the first differences which is an ARIMA(p — 1, 1, 0) model for y;.
For a model with a time trend,

p-1
Aye=p+Bt+ vy 1+ $jAn_j+e,
j=1
the test is carried out by testing the joint hypothesis that 8 = y* =0. Dickey and Fuller
(1981) present counterparts to the critical F statistics for testing the hypothesis. Some of
their values are reproduced in the first row of Table 20.4. (Authors frequently focus on
y* and ignore the time trend, maintaining it only as part of the appropriate formulation.
In this case, one may use the simple test of y* = 0 as before, with the DF, critical values.)
The lag length, p, remains to be determined. As usual, we are well advised to
test down to the right value instead of up. One can take the familiar approach and
sequentially examine the ¢ statistic on the last coefficient —the usual ¢ test is appropriate.
An alternative is to combine a measure of model fit, such as the regression s> with one
of the information criteria. The Akaike and Schwartz (Bayesian) information criteria
would produce the two information measures

’

1w = (7 ) + o (7l )
| K* =1 for random walk, 2 for random walk with drift, 3 for trend stationary
A" = 2 for Akaike criterion, In(7 — pmax — K*) for Bayesian criterion
Dmax = the largest lag length being considered.

The remaining detail is to decide upon pnax- The theory provides little guidance here.
On the basis of a large number of simulations, Schwert (1989) found that

Pmax = integer part of [12 x (7/100)%]

gave good results.

Many alternatives to the Dickey-Fuller tests have been suggested, in some cases
to improve on the finite sample properties and in others to accommodate more general
modeling frameworks. The Phillips (1987) and Phillips and Perron (1988) statistic may
be computed for the same three functional forms,

Yy=8&+yy1+rAy-1+- -+ VpAyp+e& (20-23)

where §; may be 0, u, or i+ Bt. The procedure modifies the two Dickey—Fuller statistics
we examined above;

. _ a1y 1, T
£ a v 2 0«/a32
T —1) 1/ T%?
Z, = — —
A P 2( 2 (@ —co)

21t is easily verified that one of the roots of the characteristic polynomial is 1/(y1 + y2 + - + ¥p).
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where

T
2 _ Zt:lelz
T-K

v“ = estimated asymptotic variance of

i == E ee—s, j=0,..., p= jth autocovariance of residuals
s=j+1 '

co = [(T - K)/Tls*
a=C0+22(1—m>

(Note the Newey—West (Bartlett) weights in the computation of a. As before, the analyst
must choose L.) The test statistics are referred to the same Dickey—Fuller tables we have
used before.

Elliot, Rothenberg, and Stock (1996) have proposed a method they denote the
ADF-GLS procedure which is designed to accommodate more general formulations
of ¢; the process generating ¢, is assumed to be an 7(0) stationary process, possibly an
ARMA(r, 5). The null hypothesis, as before, is y = 1in (20-23) where §; = p or p + 8t.
The method proceeds as follows:

Step 1. Linearly regress

»n 1 1 1
® }’2—")’1 on X* = 1—7‘ or X* = l_r 27

yr—ryr- 1-7 1-F T—#T-1)

for the random walk with drift and trend stationary cases, respectively. (Note that the
second column of the matrix is simply 7 4+ (1 — 7)¢.) Compute the residuals from this
regression, j, = y, — ;.7 = 1 —7/ T for the random walk model and 1 — 13.5/ T for the
model with a trend.

Step 2. The Dickey-Fuller DF, test can now be carried out using the model

W=y at+tnlAya+---+yA¥yp+n.

If the model does not contain the time trend, then the ¢ statistic for (y — 1) may be
referred to the critical values in the center panel of Table 20.4. For the trend stationary
model, the critical values are given in a table presented in Elliot et al. The 97.5 percent
critical values for a one-tailed test from their table is —3.15.

As in many such cases of a new technique, as researchers develop large and small
modifications of these tests, the practitioner is likely to have some difficulty deciding how
to proceed. The Dickey—Fuller procedures have stood the test of time as robust tools
that appear to give good results over a wide range of applications. The Phillips—Perron
tests are very general, but appear to have less than optimal small sample properties.
Researchers continue to examine it and the others such as Elliot et al. method. Other
tests are catalogued in Maddala and Kim (1998).
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Example 20.6 Augmented Dickey—Fuller Test for a Unit Root in GDP
The Dickey-Fuller 1981 JASA paper is a classic in the econometrics literature —it is probably
the single most frequently cited paper in the field. It seems appropriate, therefore, to revisit
at least some of their work. Dickey and Fuller apply their methodology to a model for the
log of a quarterly series on output, the Federal Reserve Board Production Index. The model
used is

Ye=u+ Bt + vy + d(Vee1 — Ye—2) + &1 (20-24)

The test is carried out by testing the joint hypothesis that both 8 and y* are zero in the model

Vi = Yeer ="+ Bty Ve + (Vi1 — Yi2) + 6.

(if y =0, then u* will also by construction.) We will repeat the study with our data on real GNP
from Appendix Table F5.1 using observations 1950.1 to 2000.4.

We will use the augmented Dickey—Fuller test first. Thus, the first step is to determine
the appropriate lag length for the augmented regression. Using Schwert’s suggestion, we
find that the maximum lag length should be allowed to reach pma.x = {the integer part of
12[204/100]*°} = 14. The specification search uses observations 18 to 204, since as many
as 17 coefficients will be estimated in the equation

o
Vi=p+Bt+yyq+ Z Vi AYi_j + &.
=1

In the sequence of 14 regressions with j = 14, 13, .. ., the only statistically significant lagged
difference is the first one, in the last regression, so it would appear that the model used by
Dickey and Fuller would be chosen on this basis. The two information criteria produce a
similar conclusion. Both of them decline monotonically from j = 14 all the way downto j =1,
so on this basis, we end the search with j =1, and proceed to analyze Dickey and Fuller’s
model. :

The linear regression results for the equation in (20-24) are

¥ = 0.368 4 0.000391t + 0.952y; 1 + 0.36025Ay, 1 +&, s=0.00912
(0.125) (0.000138) (0.0167)  (0.0647) R? = 0.999647.

The two test statistics are

0.95166 — 1
DF, = W = —2.892
and
DF, = 201(0.95166 —1) _ - 56

1-0.36025

Neither statistic is less than the respective critical values, which are —3.70 and —24.5. On
this basis, we conclude, as have many others, that there is a unit root in log GDP.

For the Phillips and Perron statistic, we need several additional intermediate statistics.
Following Hamilton (1994, page 512), we choose L =4 for the long-run variance calculation.
Othervalues we needare T =201, 7 =0.9516613, s = 0.00008311488, v?> = 0.00027942647,
and the first five autocovariances, ¢, =0.000081469, c¢;=—-0.00000351162, o=
0.00000688053, c; =0.000000597305, and ¢, = —0.00000128163. Applying these to the
weighted sum produces a = 0.0000840722, which is only a minor correction to ¢;. Collect-
ing the results, we obtain the Phillips-Perron statistics, Z, = —-2.89921 and Z, =—15.44133.
Since these are applied to the same critical values in the Dickey-Fuller tables, we reach the
same conclusion as before—we do not reject the hypothesis of a unit root in log GDP.
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20.3.5 LONG MEMORY MODELS

The autocorrelations of an integrated series [/(1) or 7(2)] display the characteristic
pattern shown in Table 20.3 for the log of the GNP deflator. They remain persistently
extremely high at long lags. In contrast, the autocorrelations of a stationary process typ-
ically decay at an exponential rate, so large values typically cease to appear after only a
few lags. (See, e.g., the rightmost panel of Table 20.3.) Some processes appear to behave
between these two benchmarks; they are clearly nonstationary, yet when differenced,
they appear to show the characteristic alternating positive and negative autocorrela-
tions, still out to long lags, that suggest “overdifferencing.” But the undifferenced data
show significant autocorrelations out to very long lags. Stock returns [Lo (1991)] and
exchange rates [Cheung (1993)] provide some cases that have been studied. In a strik-
ing example, Ding, Granger, and Engle (1993) found significant autocorrelations out to
lags of well over 2,000 days in the absolute values of daily stock market returns. [See
also Granger and Ding (1996).] There is ample evidence of a lack of memory in stock
market returns, but a spate of recent evidence, such as this, has been convincing that
the volatility—the absolute value resembles the standard deviation—in stock returns
has extremely long memory.

Althoughitis clear that an extension of the standard models of stationary time series
is needed to explain the persistence of the effects of shocks on, for example, GDP and the
money stock, and models of unit roots and cointegration (see Section 20.4) do appear to
be helpful, there remains something of a statistical balancing act in their construction.
If “the root” differs from one in either direction, then an altogether different set of
statistical tools is called for. For models of very long term autocorrelation, which likewise
reflect persistent response to shocks, models of long-term memory have provided a very
useful extension of the concept of nonstationarity.?® The basic building block in this class
of models is the fractionally integrated white noise series,

1- L)d)’t = &.

This time series has an infinite moving-average representation if |d| < % but it is non-
stationary. For d # 0, the sequence of autocorrelations, px = Ax/Ao, is not absolutely
summable. For this simple model,

_ Tk+d)T A —d)
Pk T k—d+Dr@)

The first 50 values of py are shown in Figure 20.15 for d = 0.1, 0.25, 0.4, and 0.475. The
Ding, Granger, and Engle computations display a pattern similar to that shown for 0.25
in the figure. [See Granger and Ding (1996, p. 66).] The natural extension of the model
that allows for more intricate patterns in the data is the autoregressive, fractionally
integrated, moving-average, or ARFIMA(p, d, q) model,

A= D =vyr = —vpypl =6 =011 — - —Ogeigq, =Y, —p.

These models appear to have originated in the physical sciences early in the 1950s, especially with Hurst
(1951), whose name is given to the effect of very long term autocorrelation in observed time series. The pio-
neering work in econometrics is that of Taqqu (1975), Granger and Joyeux (1980), Granger (1981), Hosking
(1981), and Geweke and Porter-Hudak (1983). An extremely thorough summary and an extensive bibliogra-
phy are given in Baillie (1996). k
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Estimation of ARFIMA models is discussed in Baillie (1996) and the references cited
there. A test for fractional integration effects is suggested by Geweke and Porter-Hudak
(1983). The test is based on the slope in the linear regression of the logs of the first n(7)
values from the sample periodogram of y,, that is, zx = log fiy(wy), on the corresponding
functions of the first n(T) frequencies, x; = log{4 sinz(a)k/Z)}. Here n(T) is taken to be
reasonably small; Geweke and Porter-Hudak suggest n(T) = +/T. A conventional ¢ test
of the hypothesis that the slope equals zero is used to test the hypothesis.

Example 20.7 Long-Term Memory in the Growth of Real GNP

For the real GDP series analyzed in Example 20.6, we analyze the subseries 1950.3 to
1983.4, with T =135, so we take n(T) = 12. The frequencies used for the periodogram are
27k/135,k = 1,...,12. The first 12 values from the periodogram are [0.05104, 0.4322,
0.7227, 0.3659, 1.353, 1.257, 0.05533, 1.388, 0.5955, 0.2043, 0.3040, 0.6381]. The linear
regression produces an estimate of d of 0.2505 with a standard error of 0.225. Thus, the
hypothesis that d equals zero cannot be rejected. This result is not surprising; the first seven
autocorrelations of the series are 0.491, 0.281, 0.044, —0.076, —0.120, —0.052, and 0.018.
They are trivial thereafter, suggesting that the series is, in fact, stationary. This assumption, in
itself, creates something of an ambiguity. The log of the real GNP series does indeed appear
to be / (1). But the price level used to compute real GNP is fairly convincingly / (2}, or at least
/(14 d) for some d greater than zero, judging from Figure 20.7. As such, the log of real GNP
is the log of a variable that is probably at least /(1 + d). Although received results are not
definitive, this result is probably not /(1).

Models of long-term memory have been extended in many directions, and the
results have been fully integrated with the unit root platform discussed earlier. Baillie’s
survey details many of the recently developed methods.
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Example 20.8 Long-Term Memory in Foreign Exchange Markets
Cheung (1993) applied the long-term memory model to a study of end of week exchange
rates for 16 years, 1974 to 1989. The time-series studied were the dollar spot rates of the
British pound (BP), Deutsche mark (DM), Swiss franc (SF), French franc (FF), and Japanese
yen (JY). Testing and estimation were done using the 1974 to 1987 data. The final 2 years of
the sample were held out for out of sample forecasting.

Data were analyzed in the form of first differences of the logs so that observations are
week-to-week percentage changes. Plots of the data did not suggest any obvious deviation
from stationarity. As an initial assessment, the undifferenced data were subjected to aug-
mented Dickey-Fuller tests for unit roots and the hypothesis could not be rejected. Thus,
analysis proceeded using the first differences of the logs. The GPH test using n(T) = /T for
long memory in the first differences produced the following estimates of d, with estimated
“p values” in parentheses. (The p value is the standard normal probability that N[O, 1] is
greater than or equal to the ratio of the estimated d to its estimated standard error. These
tests are one-sided tests. Values less than 0.05 indicate statistical significance by the usual
conventions.)

Currency BP DM SF JY FF
d 0.1869 0.2943 0.2870 0.2907 0.4240
pvalue  (0.106) (0.025) (0.028) (0.026) (0.003)

The unit root hypothesis is rejected in favor of the long memory model in four of the five
cases. The author proceeded to estimate ARFIMA(p, d, q) models. The coefficients of the
ARFIMA models (d is recomputed) are small in all cases save for the French franc, for which
the estimated model is

(1= L)***[(FF, — FF) — 0.4776(F F_y — FF) — 0.1227(FF, , — FF)]
=& + 0.8657¢;_;.

20.4 COINTEGRATION

Studies in empirical macroeconomics almost always involve nonstationary and trending
variables, such as income, consumption, money demand, the price level, trade flows, and
exchange rates. Accumulated wisdom and the results of the previous sections suggest
that the appropriate way to manipulate such series is to use differencing and other
transformations (such as seasonal adjustment) to reduce them to stationarity and then
to analyze the resulting series as VARs or with the methods of Box and Jenkins. But
recent research and a growing literature has shown that there are more interesting,
appropriate ways to analyze trending variables.
In the fully specified regression model

V= Bx + &,

there is a presumption that the disturbances ¢, are a stationary, white noise series.2* But
this presumption is unlikely to be true if y, and x, are integrated series. Generally, if
two series are integrated to different orders, then linear combinations of them will be
integrated to the higher of the two orders. Thus, if y, and x, are I(1)—that is, if both
are trending variables—then we would normally expect y, — Bx, to be I(1) regardless
of the value of g, not /(0) (i.e., not stationary). If y, and x, are each drifting upward

241f there is autocorrelation in the model, then it has been removed through an appropriate transformation.
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with their own trend, then unless there is some relationship between those trends, the
difference between them should also be growing, with yet another trend. There must
be some kind of inconsistency in the model. On the other hand, if the two series are
both I(1), then there may be a g such that

&=y — Bx

is 1(0). Intuitively, if the two series are both 7(1), then this partial difference between
them might be stable around a fixed mean. The implication would be that the series are
drifting together at roughly the same rate. Two series that satisty this requirement are
said to be cointegrated, and the vector [1, —B] (or any multiple of it) is a cointegrating
vector. In such a case, we can distinguish between a long-run relationship between y,
and x;, that is, the manner in which the two variables drift upward together, and the
short-run dynamics, that is, the relationship between deviations of y, from its long-run
trend and deviations of x; from its long-run trend. If this is the case, then differencing of
the data would be counterproductive, since it would obscure the long-run relationship
between y, and x,. Studies of cointegration and a related technique, error correction,
are concerned with methods of estimation that preserve the information about both
forms of covariation.?

Example 20.9 Cointegration in Consumption and Output

Consumption and income provide one of the more familiar examples of the phenomenon
described above. The logs of GDP and consumption for 1950.1 to 2000.4 are plotted in Fig-
ure 20.16. Both variables are obviously nonstationary. We have already verified that there
is a unit root in the income data. We leave as an exercise for the reader to verify that
consumption variable is likewise /(1). Nonetheless, there is a clear relationship between
consumption and output. To see where this discussion of relationships among variables
is going, consider a simple regression of the log of consumption on the log of income,
where both variables are manipulated in mean deviation form (so, the regression includes
a constant). The slope in that regression is 1.056765. The residuals from the regression,
u; = [InCons™, INnGDP*][1, —1.056765] (where the “*” indicates mean deviations) are plot-
ted in Figure 20.17. The trend is clearly absent from the residuals. But, it remains to verify
whether the series of residuals is stationary. In the ADF regression of the least squares resid-
uals on a constant (random walk with drift), the lagged value and the lagged first difference,
the coefficient on u;_, is 0.838488 (0.0370205) and that on u;_1 — U;_» is —0.098522. (The
constant differs trivially from zero because two observations are lost in computing the ADF
regression.) With 202 observations, we find DF, = —4.63 and DF, = —29.55. Both are well
below the critical values, which suggests that the residual series does not contain a unit
root. We conclude (at least it appears so) that even after accounting for the trend, although
neither of the original variables is stationary, there is a linear combination of them that is. If
this conclusion holds up after a more formal treatment of the testing procedure, we will state
that logGDP and log consumption are cointegrated.

Example 20.10 Several Cointegrated Series
The theory of purchasing power parity specifies that in long-run equilibrium, exchange rates
will adjust to erase differences in purchasing power across different economies. Thus, if py
and py are the price levels in two countries and E is the exchange rate between the two
currencies, then in equilibrium,

= Et& =u, aconstant.
Pot

BSee, for example, Engle and Granger (1987) and the lengthy literature cited in Hamilton (1994). A survey
paper on VARs and cointegration is Watson (1994).
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Cointegrated Variables: Logs of GDP and Consumption
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The price levels in any two countries are likely to be strongly trended. But allowing for short-
term deviations from equilibrium, the theory suggests that for a particular 8 = (Iny, —1, 1),
in the model

INE¢ = By + B2In pry + BaIn por + ¢,

& = Invs would be a stationary series, which would imply that the logs of the three variables
in the model are cointegrated.

We suppose that the model involves M variables, y, = [y, ..., ym], which indi-
vidually may be 1(0) or /(1), and a long-run equilibrium relationship,

Yy —xB=0.

The “regressors” may include a constant, exogenous variables assumed to be I(0),
and/or a time trend. The vector of parameters y is the cointegrating vector. In the short
run, the system may deviate from its equilibrium, so the relationship is rewritten as

V¥ — X8 =¢,

where the equilibrium error ¢, must be a stationary series. In fact, since there are M
variables in the system, at least in principle, there could be more than one cointegrating
vector. In a system of M variables, there can only be up to M — 1 linearly independent
cointegrating vectors. A proof of this proposition is very simple, but useful at this point.

Proof: Suppose that y; is a cointegrating vector and that there are M linearly
independent cointegrating vectors. Then, neglecting x;8 for the moment, for
every y;,y;y; is a stationary series v;;. Any linear combination of a set of
stationary series is stationary, so it follows that every linear combination of the
cointegrating vectors is also a cointegrating vector. If there are M such M x 1
linearly independent vectors, then they form a basis for the M-dimensional
space, so any M x 1 vector can be formed from these cointegrating vectors,
including the columns of an M x M identity matrix. Thus, the first column of
an identity matrix would be a cointegrating vector, or y,; is 1(0). This result is
a contradiction, since we are allowing y, to be 7(1). It follows that there can
be at most M — 1 cointegrating vectors.

The number of linearly independent cointegrating vectors that exist in the equilib-
rium system is called its cointegrating rank. The cointegrating rank may range from 1 to
M — 1. If it exceeds one, then we will encounter an interesting identification problem.
As a consequence of the observation in the preceding proof, we have the unfortunate
result that, in general, if the cointegrating rank of a system exceeds one, then without
out-of-sample, exact information, it is not possible to estimate behavioral relationships
as cointegrating vectors. Enders (1995) provides a useful example.

Example 20.11 Multiple Cointegrating Vectors
We consider the logs of four variables, money demand m, the price level p, real income y,
and an interest rate r. The basic relationship is

m=yy+y1P+ y2y+ var +e.

The price level and real income are assumed to be / (1). The existence of long-run equilibrium
in the money market implies a cointegrating vector «. If the Fed follows a certain feedback
rule, increasing the money stock when nominal income (y + p) is low and decreasing it when
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nominal income is high—which might make more sense in terms of rates of growth—then
there is a second cointegrating vector in which vy = y, and y; = 0. Suppose that we label
this vector a. The parameters in the money demand equation, notably the interest elasticity,
are interesting quantities, and we might seek to estimate a4 to learn the value of this quantity.
But since every linear combination of a4 and «; is a cointegrating vector, to this point we are
only able to estimate a hash of the two cointegrating vectors.

In fact, the parameters of this model are identifiable from sample information (in principle).
We have specified two cointegrating vectors,

1 =11 —vi0, —¥11, —v12, — 113l

and

yo =[1, =0, y21, v21, 0]’

Although it is true that every linear combination of y, and y, is a cointegrating vector, only
the original two vectors, as they are, have ones in the first position of both and a 0 in the
last position of the second. (The equality restriction actually overidentifies the parameter
matrix.) This result is, of course, exactly the sort of analysis that we used in establishing the
identifiability of a simultaneous-equations system.

20.4.1 COMMON TRENDS

If two I(1) variables are cointegrated, then some linear combination of them is I 0).
Intuition should suggest that the linear combination does not mysteriously create a
well-behaved new variable; rather, something present in the original variables must be
missing from the aggregated one. Consider an example. Suppose that two /(1) variables
have a linear trend,

yu=o+8t+u,
Y =y + 8+,

where u, and v, are white noise. A linear combination of y;; and yy; with vector (1, 9)
produces the new variable,

= (a+08y)+ (B+06)t +u, +0v,

which, in general, is still /(1). In fact, the only way the z, series can be made stationary
i8if§ = — /5. If so, then the effect of combining the two variables linearly is to remove
the common linear trend, which is the basis of Stock and Watson’s (1988) analysis of the
problem. But their observation goes an important step beyond this one. The only way
that y\; and yy can be cointegrated to begin with is if they have a common trend of some
sort. To continue, suppose that instead of the linear trend ¢, the terms on the right-hand
side, y; and y,, are functions of a random walk, w, = w,_; + ,, where n; is white noise.
The analysis is identical. But now suppose that each variable y;; has its own random
walk component w;;, i =1, 2. Any linear combination of y;, and y; must involve both
random walks. It is clear that they cannot be cointegrated unless, in fact, wy, = wo,.
That is, once again, they must have a common trend. Finally, suppose that y;; and y,
share two common trends,

yie=a+pt+iw +uy,
Yu=y+t+aw + .
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We place no restriction on A and . Then, a bit of manipulation will show that it is not
possible to find a linear combination of y;; and y,, that is cointegrated, even though
they share common trends. The end result for this example is that if y;, and y,, are
cointegrated, then they must share exactly one common trend.

As Stock and Watson determined, the preceding is the crux of the cointegration
of economic variables. A set of M variables that are cointegrated can be written as a
stationary component plus linear combinations of a smaller set of common trends. If
the cointegrating rank of the system is 7, then there can be up to M — r linear trends and
M — r common random walks. [See Hamilton (1994, p. 578).] (The two-variable case is
special. In a two-variable system, there can be only one common trend in total.) The
effect of the cointegration is to purge these common trends from the resultant variables.

20.4.2 ERROR CORRECTION AND VAR REPRESENTATIONS

Suppose that the two (1) variables y, and z, are cointegrated and that the cointegrating
vector is [1, —0]. Then all three variables Ay, = y; — y,—1, Az, and (y; — 6z) are 1(0).
The error correction model

Ay, =X+ y(Az) +A(yi—1 —0z-1) + &

describes the variation in y, around its long-run trend in terms of a set of 7(0) exogenous
factorsx,, the variation of z; around its long-run trend, and the error correction (y, —6z).
which is the equilibrium error in the model of cointegration. There is a tight connection
between models of cointegration and models of error correction. The model in this form
is reasonable as it stands, but in fact, it is only internally consistent if the two variables
are cointegrated. If not, then the third term, and hence the right-hand side, cannot be
1(0), even though the left-hand side must be. The upshot is that the same assumption
that we make to produce the cointegration implies (and is implied by) the existence
of an error correction model.?® As we will examine in the next section, the utility of
this representation is that it suggests a way to build an elaborate model of the long-run
variation in y; as well as a test for cointegration. Looking ahead, the preceding suggests
that residuals from an estimated cointegration model—that is, estimated equilibrium
errors—can be included in an elaborate model of the long-run covariation of y; and
Z:. Once again, we have the foundation of Engel and Granger’s approach to analyzing
cointegration. ~
Consider the VAR representation of the model

Ye =Ty +e,
where the vector y; is [y, z:]. Now take first differences to obtain
Y = Y1 =T —Dy.1 +e&
or
Ay, = Iy, + .

If all variables are I(1), then all M variables on the left-hand side are 7(0). Whether
those on the right-hand side are /(0) remains to be seen. The matrix IT produces linear

26The result in its general form is known as the Granger representation theorem. See Hamilton (1994, p. 582).
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combinations of the variables in y,. But as we have seen, not all linear combinations
can be cointegrated. The number of such independent linear combinations is r < M.
Therefore, although there must be a VAR representation of the model, cointegration
implies a restriction on the rank of I1. It cannot have full rank; its rank is 7. From another
viewpoint, a different approach to discerning cointegration is suggested. Suppose that
we estimate this model as an unrestricted VAR. The resultant coefficient matrix should
be short-ranked. The implication is that if we fit the VAR model and impose short rank
on the coefficient matrix as a restriction—how we could do that remains to be seen—
then if the variables really are cointegrated, this restriction should not lead to a loss
of fit. This implication is the basis of Johansen’s (1988) and Stock and Watson’s (1988)
analysis of cointegration.

20.4.3 TESTING FOR COINTEGRATION

A natural first step in the analysis of cointegration is to establish that it is indeed a
characteristic of the data. Two broad approaches for testing for cointegration have
been developed. The Engle and Granger (1987) method is based on assessing whether
single-equation estimates of the equilibrium errors appear to be stationary. The second
approach, due to Johansen (1988, 1991) and Stock and Watson (1988), is based on the
VAR approach. As noted earlier, if a set of variables is truly cointegrated, then we
should be able to detect the implied restrictions in an otherwise unrestricted VAR. We
will examine these two methods in turn.

Lety; denote the set of M variables that are believed to be cointegrated. Step one
of either analysis is to establish that the variables are indeed integrated to the same
order. The Dickey-Fuller tests discussed in Section 20.3.4 can be used for this purpose.
If the evidence suggests that the variables are integrated to different orders or not at
all, then the specification of the model should be reconsidered.

If the cointegration rank of the system is r, then there are r independent vectors,
y: = [1. —8;], where each vector is distinguished by being normalized on a different
variable. If we suppose that there are also a set of 1(0) exogenous variables, includ-
ing a constant, in the model, then each cointegrating vector produces the equilibrium
relationship

y;}’t = X;ﬂ + &ty
which we may rewrite as
Yie = Y[,0; + X8 +&;.

We can obtain estimates of ; by least squares regression. If the theory is correct and if
this OLS estimator is consistent, then residuals from this regression should estimate the
equilibrium errors. There are two obstacles to consistency. First, since both sides of the
equation contain /(1) variables, the problem of spurious regressions appears. Second,
a moment’s thought should suggest that what we have done is extract an equation
tfrom an otherwise ordinary simultaneous-equations model and propose to estimate
its parameters by ordinary least squares. As we examined in Chapter 15, consistency
is unlikely in that case. It is one of the extraordinary results of this body of theory
that in this setting, neither of these considerations is a problem. In fact, as shown by
a number of authors [see, e.g., Davidson and MacKinnon (1993)], not only is ¢;, the
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OLS estimator of 6;, consistent, it is superconsistent in that its asymptotic variance
is O(1/T?) rather than O(1/T) as in the usual case. Consequently, the problem of
spurious regressions disappears as well. Therefore, the next step is to estimate the
cointegrating vector(s), by OLS. Under all the assumptions thus far, the residuals from
these regressions, e;,, are estimates of the equilibrium errors, ¢;,. As such, they should
be I(0). The natural approach would be to apply the familiar Dickey—Fuller tests to
these residuals. The logic is sound, but the Dickey-Fuller tables are inappropriate for
these estimated errors. Estimates of the appropriate critical values for the tests are
given by Engle and Granger (1987), Engle and Yoo (1987), Phillips and Ouliaris (1990),
and Davidson and MacKinnon (1993). If autocorrelation in the equilibrium errors is
suspected, then an augmented Engle and Granger test can be based on the template

Aeyy = ey 1+ Pr(Aej 1) + -+ uy.

If the null hypothesis that § = 0 cannot be rejected (against the alternative 8 < 0), then
we conclude that the variables are not cointegrated. (Cointegration can be rejected by
this method. Failing to reject does not confirm it, of course. But having failed to reject
the presence of cointegration, we will proceed as if our finding had been affirmative.)

Example 20.9 (Continued) Consumption and Output

In the example presented at the beginning of this discussion, we proposed precisely the sort
of test suggested by Phillips and Ouliaris (1990) to determine if (log) consumption and (log)
GDP are cointegrated. As noted, the logic of our approach is sound, but a few considerations
remain. The Dickey-Fuller critical values suggested for the test are appropriate only in a few
cases, and not when several trending variables appear in the equation. For the case of only a
pair of trended variables, as we have here, one may use infinite sample values in the Dickey-
Fuller tables for the trend stationary form of the equation. (The drift and trend would have
been removed from the residuals by the original regression, which would have these terms
either embedded in the variables or explicitly in the equation.) Finally, there remains an issue
of how many lagged differences to include in the ADF regression. We have specified one,
though further analysis might be called for. (A lengthy discussion of this set of issues appears
in Hayashi (2000, pp. 645-648.) Thus, but for the possibility of this specification issue, the
ADF approach suggested in the introduction does pass muster. The sample value found
earlier was —4.63. The critical values from the table are —3.45 for 5 percent and —3.67 for
2.5 percent. Thus, we conclude (as have many other analysts) that log consumption and log
GDP are cointegrated.

The Johansen (1988, 1992) and Stock and Watson (1988) methods are similar, so
we will describe only the first one. The theory is beyond the scope of this text, although

the operational details are suggestive. To carry out the Johansen test, we first formulate
the VAR

Y=Tiyya+Ty o+ +T,y p+e.

The order of the model, p, must be determined in advance. Now, let z, denote the vector
of M(p — 1) variables,

;= [Ayt—]v Ayi2,..., Ayt—p+l]-

That s, z; contains the lags 1 to p—1 of the first differences of all M variables. Now, using
the T available observations, we obtain two T x M matrices of least squares residuals:

D = the residuals in the regressions of Ay, on z,,

E = the residuals in the regressions of y,_, on z;.
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We now require the M squared canonical correlations between the columns in D
and those in E. To continue, we will digress briefly to define the canonical correlations.
Letd] denote a linear combination of the columns of D, and let e} denote the same from
E. We wish to choose these two linear combinations so as to maximize the correlation
between them. This pair of variables are the first canonical variates, and their correlation
r{ is the first canonical correlation. In the setting of cointegration, this computation has
some intuitive appeal. Now, with d} and e} in hand, we seck a second pair of variables d3
and €5 to maximize their correlation, subject to the constraint that this second variable
in each pair be orthogonal to the first. This procedure continues for all M pairs of
variables. It turns out that the computation of all these is quite simple. We will not need
to compute the coefficient vectors for the linear combinations. The squared canonical
correlations are simply the ordered characteristic roots of the matrix

-1/2 - -1/2
R* = RD[é RDEREEREDRDD/ J
where R;; is the (cross-) correlation matrix between variables in set i and set j, for
i,j=D,E.

Finally, the null hypothesis that there are r or fewer cointegrating vectors is tested
using the test statistic

M
TRACETEST = —T ) In[1 - (;)°].
i=r+1

If the correlations based on actual disturbances had been observed instead of estimated,
then we would refer this statistic to the chi-squared distribution with M — r degrees
of freedom. Alternative sets of appropriate tables are given by Johansen and Jusclius
(1990) and Osterwald-Lenum (1992). Large values give evidence against the hypothesis
of r or fewer cointegrating vectors.

20.4.4 ESTIMATING COINTEGRATION RELATIONSHIPS

Both of the testing procedures discussed above involve actually estimating the coin-
tegrating vectors, so this additional section is actually superfluous. In the Engle and
Granger framework, at a second step after the cointegration test, we can use the resid-
uals from the static regression as an error correction term in a dynamic, first-difference
regression, as shown in Section 20.4.2. One can then “test down” to find a satisfactory
structure. In the Johansen test shown earlier, the characteristic vectors corresponding to
the canonical correlations are the sample estimates of the cointegrating vectors. Once
again, computation of an error correction model based on these first step results is a
natural next step. We will explore these in an application.

20.4.5 APPLICATION: GERMAN MONEY DEMAND

The demand for money has provided a convenient and well targeted illustration of
methods of cointegration analysis. The central equation of the model is

m—pr=pu+By+yi+e& (20-25)

where my, p; and y, are the logs of nominal money demand, the price level and output
and i is the nominal interest rate (not the log of). The equation involves trending
variables (m, p;, y;) and one which we found earlier appears to be a random walk with
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drift (i;). As such, the usual form of statistical inference for estimation of the income
elasticity and interest semielasticity based on stationary data is likely to be misleading.

Beyer (1998) analyzed the demand for money in Germany over the period 1975
to 1994. A central focus of the study was whether the 1990 reunification produced a
structural break in the long-run demand function. (The analysis extended an earlier
study by the same author that was based on data which predated the reunification.)
One of the interesting questions pursued in this literature concerns the stability of the
long-term demand equation,

(m—p)—y=pn+vyic+e. (20-26)

The left hand side is the log of the inverse of the velocity of money, as suggested
by Lucas (1988). An issue to be confronted in this specification is the exogeneity of
the interest variable —exogeneity [in the Engle, Hendry, and Richard (1993) sense] of
income is moot in the long-run equation as its coefficient is assumed (per Lucas) to
equal one. Beyer explored this latter issue in the framework developed by Engle et al.
(see Section 19.6.4) and through the Granger causality testing methods discussed in
Section 19.6.5.

The analytical platform of Beyer’s study is a long run function for the real money
stock M3 (we adopt the author’s notation)

(m— p)* =80+ 81y + 5:RS + 83RL + 84 Aup (20-27)

where RS is a short-term interest rate, RL is a long-term interest rate, and A4p is the
annual inflation rate—the data are quarterly. The first step is an examination of the
data. Augmented Dickey-Fuller tests suggest that for these German data in this period,
m; and p, are 1(2) while (m; — p,), y;. Aspr, RS, and RL, are all /(1). Some of Beyer’s
results which produced these conclusions are shown in Table 20.7. Note that though
both m; and p; appear to be 1(2), their simple difference (linear combination) is (1),
that is, integrated to a lower order. That produces the long-run specification given by
(20-27). The Lucas specification is layered onto this to produce the model for the long-
run velocity

(m—p—y)* =8+ 8RS +8RL +8;A4p. ' (20-28)

, \ugmented Dickey-Fuller Tests for Variables in the Beyer Model
Variable m Am Alm p Ap A’p Ag4p AAqp

2

Spec. TS RW RW TS RWD RW  RWD  RW
lag 0 4 3 4 3 2 2 2

DF, ~1.82  —161  —687 209 —2.14 ~-10.6 —2.66 —5.48
Crit. Value ~ —347 —1.95 195 347 =290 -1.95 -2.90 -1.95
Variable y Ay RS ARS RL ARL (m-p) A(m-—p)
Spec. TS RWD TS RW TS RW  RW/D  RWD
lag 4 3 1 0 1 0 0 0

DF, -183 291 233 =526 —2.40 —601  —1.65 ~8.50

Crit. Value  -3.47 =290 -290 -195 =290 -195 347 -2.90
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20.4.5a. Cointegration Analysis and a Long Run Theoretical Model

In order for (20-27) to be a valid model, there must be at least one cointegrating vector
that transforms z, = [(m, — p;), yi, RS, RL,, Ayp,] to stationarity. The Johansen trace
test described in Section 20.4.3 was applied to the VAR consisting of these five 1(1)
variables. A lag length of two was chosen for the analysis. The results of the trace test
are a bit ambiguous; the hypothesis that r = 0 is rejected, albeit not strongly (sample
value = 90.17 against a 95% critical value = 87.31) while the hypothesis that » < 1is not
rejected (sample value = 60.15 against a 95% critical value of 62.99). (These borderline
results follow from the result that Beyer’s first three eigenvalues — canonical correlations
in the trace test statistic—are nearly equal. Variation in the test statistic results from
variation in the correlations.) On this basis, it is concluded that the cointegrating rank
equals one. The unrestricted cointegrating vector for the equation, with a time trend
added is found to be

(m — p) = 0.936y — 1.780A,p + 1.601RS — 3.279RL +0.002t.  (20-29)

(These are the coefficients from the first characteristic vector of the canonical correlation
analysis in the Johansen computations detailed in Section 20.4.3.) An exogeneity test—
we have not developed thisin detail; see Beyer (1998, p. 59), Hendry and Ericsson (1991)
and Engle and Hendry (1993)—confirms weak exogeneity of all four right-hand side
variables in this specification. The final specification test is for the Lucas formulation
and elimination of the time trend, both of which are found to pass, producing the
cointegration vector

(m—p—y)=—-1832A4p+4.352RS — 10.89RL.

The conclusion drawn from the cointegration analysis is that a single equation model
for the long run money demand is appropriate and a valid way to proceed. A last step
before this analysis is a series of Granger causality tests for feedback between changes
in the money stock and the four right hand variables in (20-29) (not including the trend).
(See Section 19.6.5.) The test results are generally favorable, with some mixed results
for exogeneity of GDP.

20.4.5b. Testing for Model Instability

Letz, = [(m: — p,). yi, Aspr, RS;, RL,] and let z?_l denote the entire history of z, up
to the previous period. The joint distribution for z;, conditioned on z0_, and a set of
parameters ¥ factors one level further into

f(Z[ ’z?—17 \IJ) = f{(m_— p)f |Yta A4p[vRSt7RLtvz?71a ‘-Ill]
X g(yt, A4p[, RS[, RL[, Z?_l, lIJZ).

The result of the exogeneity tests carried out earlier implies that the conditional
distribution may be analyzed apart from the marginal distribution—that is the im-
plication of the Engle, Hendry, and Richard results noted earlier. Note the partitioning
of the parameter vector. Thus, the conditional model is represented by an error correc-
tion form that explains A(m — p), in terms of its own lags, the error correction term
and contemporaneous and lagged changes in the (now established) weakly exogenous



660 CHAPTER 20 4 Time-Series Models

variables as well as other terms such as a constant term, trend, and certain dummy
variables which pick up particular events. The error correction model specified is

4 4 4
A(m—p), = ZCiA(m —Dhi+ Zdl,iA(A4p,_,-) + ZdZ,iAYt—i

i=1 i=0 i=0
4 4
+> dsiARS, i+ Y deiARLi; +A(m—p— )1 (20-30)
i=0 i=0

+7RS,_1 + »RL,_1 + djp + o,

where d, is the set of additional variables, including the constant and five one period
dummy variables that single out specific events such as a currency crisis in September,
1992 [Beyer (1998, page 62, fn. 4)]. The model is estimated by least squares, “stepwise
simplified and reparameterized.” (The number of parameters in the equation is reduced
from 32 to 15.%7)

The estimated form of (20-30) is an autoregressive distributed lag model. We pro-
ceed to use the model to solve for the long run, steady state growth path of the real
money stock, (21-27). The annual growth rates Aym = g, Ayp = &p, A4y = gy and
(assumed) A4RS = ggrs = A4RL = ggr = 0 are used for the solution

1 c d
Z(gm - gp) = f(gm - gp) - dl,lgp + '%gy + RS+ y2RL + A(m — P - y)~28

This equation is solved for (m — p)* under the assumption that g,, = (g, + &),
m-p) = 30 + Slgy +y+ 82A4p + 83RS + 84RL.

Analysis then proceeds based on this estimated long run relationship.

The primary interest of the study is the stability of the demand equation pre- and
postunification. A comparison of the parameter estimates from the same set of pro-
cedures using the period 1976-1989 shows them to be surprisingly similar, [(1.22 —
3.67gy), 1, ~3.67,3.67, —6.44] for the earlier period and [(1.25 — 2.09g,), 1, —3.625,
3.5, —7.25] for the later one. This suggests, albeit informally, that the function has not
changed (at least by much). A variety of testing procedures for structural break, includ-
ing the Andrews and Ploberger tests discussed in Section 7.4, led to the conclusion that
in spite of the dramatic changes of 1990, the long run money demand function had not
materially changed in the sample period.

20.5 SUMMARY AND CONCLUSIONS

This chapter has completed our survey of techniques for the analysis of time-series data.
While Chapter 19 was about extensions of regression modeling to time-series setting,
most of the results in this Chapter focus on the internal structure of the individual time
series, themselves. We began with the standard models for time-series processes. While

2TThe equation ultimately used is A(m; — p;) = h[A(n — p);—a, AAspy, Azy,_z, ARS,_| + ARS,_3, ARL;,
RS, 1,RL;—1,A4pr 1, im— p ~ y)r1,dy].

ZThe division of the coefficients is done because the intervening lags do not appear in the estimated equation.
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the empirical distinction between, say AR(p) and MA(q) series may seem ad hoc, the
Wold decomposition assures that with enough care, a variety of models can be used to
analyze a time series. Section 20.2 described what is arguably the fundamental tool of
modern macroeconometrics, the tests for nonstationarity. Contemporary econometric
analysis of macroeconomic data has added considerable structure and formality to
trending variables, which are more common than not in that setting. The variants of
the Dickey-Fuller tests for unit roots are an indispensable tool for the analyst of time-
series data. Section 20.4 then considered the subject of cointegration. This modeling
framework is a distinct extension of the regression modeling where this discussion
began. Cointegrated relationships and equilibrium relationships form the basis the time-
series counterpart to regression relationships. But, in this case, it is not the conditional
mean as such that is of interest. Here, both the long-run equilibrium and short-run
relationships around trends are of interest and are studied in the data.

Key Terms and Concepts

¢ Autoregressive integrated e Common trend - ¢ Linearly indeterministic
moving-average (ARIMA) ¢ Correlogram component
process o Covariance stationary * Moving average

¢ Augmented Dickey-Fuller ¢ Data generating process ¢ Nonstationary process
test (DGP) ¢ Partial autocorrelation

¢ Autocorrelation ¢ Dickey-Fuller test e Phillips—Perron test

¢ Autocorrelation function ¢ Equilibrium error ¢ Random walk
(ACF) ¢ Ergodic ¢ Random walk with drift

¢ Autocovariance at lag K ¢ Error correction model « Sample periodogram

¢ Autoregression ¢ Fourier transform e Spectral density function

» Autoregressive form e Fractional integration - o Stationarity

» Autoregressive moving ¢ Frequency domain e Square summable
average ¢ Identification ¢ Superconsistent

¢ Box-Jenkins analysis e Innovation ¢ Trend stationary

 Canonical correlation e Integrated process * Unit root

¢ Characteristic equation e Integrated of order one ¢ Univariate time series

« Cointegration ¢ Invertibility » White noise

¢ Cointegration rank * Lag window e Wold decomposition

o Cointegration relationship ¢ Linearly deterministic * Yule-Walker equations

e Cointegrating vector component

Exercises

1. Find the autocorrelations and partial autocorrelations for the MA(2) process
& =v —6v_1 — o

2. Carry out the ADF test for a unit root in the bond yield data of Example 20.1.
3. Using the macroeconomic data in Appendix Table F5.1, estimate by least squares
the parameters of the model

¢ = Bo+ By + Baci—1 + B3ci—a + &,

where ¢, is the log of real consumption and y, is the log of real disposable income.
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hd

a. Use the Breusch and Pagan test to examine the residuals for autocorrelation.

b. Is the estimated equation stable? What is the characteristic equation for the au-
toregressive part of this model? What are the roots of the characteristic equation,
using your estimated parameters?

¢. What is your implied estimate of the short-run (impact) multiplier for change in
v on ¢,? Compute the estimated long-run multiplier.

Verify the result in (20-10).

Show the Yule-Walker equations for an ARMAC(1, 1) process.

Carry out an ADF test for a unit root in the rate of inflation using the subset of the

data in Table F5.1 since 1974.1. (This is the first quarter after the oil shock of 1973.)

Estimate the parameters of the model in Example 15.1 using two-stage least squares.

Obtain the residuals from the two equations. Do these residuals appear to be white

noise series? Based on your findings, what do you conclude about the specification

of the model?
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