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ABSTRACT

A fuzzy restriction may be visualized as an elastic con-
straint on the values that may be assigned to a variable. In
terms of such restrictions, the meaning of a proposition of
the form "x is P," where x is the name of an object and P is
a fuzzy set, may be expressed as a relational assignment
equation of the form R(A(x)) = P, where A(x) is an implied
attribute of x, R is a fuzzy restriction on x, and P is the
unary fuzzy relation which is assigned to R. For example,

"Stella is young," where young is a fuzzy subset of the real
line, translates into R(Age(Stella))= young.

The calculus of fuzzy restrictions is concerned, in the
main, with (a) translation of propositions of various types
into relational assignment equations, and (b) the study of
transformations of fuzzy restrictions which are induced by
linguistic modifiers, truth-functional modifiers, composi-
tions, projections and other operations. An important appli-
cation of the calculus of fuzzy restrictions relates to what

might be called approximate reasoning, that is, a type of

reasoning which is neither very exact nor very inexact. The
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main ideas behind this application are outlined and illustra-

ted by examples.

[. INTRODUCTION

During the past decade, the theory of fuzzy sets has
developed in a variety of directions, finding applications in
such diverse fields as taxonomy, topology, lTinguistics, auto-
mata theory, logic, control theory, game theory, information
theory, psychology, pattern recognition, medicine, law, deci-
sion analysis, system theory and information retrieval.

A common thread that runs through most of the applica-
tions of the theory of fuzzy sets relates to the concept of a

fuzzy restriction — that is, a fuzzy relation which acts as an

elastic constraint on the values that may be assigned to a
variable. Such restrictions appear to play an important role
in human cognition, especially in situations involving con-
cept formation, pattern recognition, and decision-making 1in
fuzzy or uncertain environments.

As its name implies, the calculus of fuzzy restrictions

is essentially a body of concepts and techniques for dealing
with fuzzy restrictions in a systematic fashion. As such, it
may be viewed as a branch of the theory of fuzzy relations,
in which it plays a role somewhat analogous to that of the
calculus of probabilities In probability theory. However, a
more specific aim of the calculus of fuzzy restrictions is to
furnish a conceptual basis for fuzzy logic and what might be

called approximate reasoning [1], that is, a type of reason-

ing which is neither very exact nor very inexact. Such rea-
soning plays a basic role in human decision-making because it
provides a way of dealing with problems which are too complex

for precise solution. However, approximate reasoning is more
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than a method of last recourse for coping with insurmountable
complexities. It is, also, a way of simplifying the perfor-
mance of tasks in which a high degree of precision is neither
needed nor required. Such tasks pervade much of what we do
on both conscious and subconscious levels.

What is a fuzzy restriction? To illustrate its meaning
in an informal fashion, consider the following proposition

(in which italicized words represent fuzzy concepts):

Tosi is youn (1.1)
Ted has gray hair (1.2)
Sakti and Kapali are approximately equal

in height. (1.3)

Starting with (1.1), Tet Age (Tosi) denote a numerically-
valued variable which ranges over the interval [0,100]. With
this interval regarded as our universe of discourse U, young
may be interpreted as the Tabel of a fuzzy subsetl of U which

is characterized by a compatibility function, Myoung., of the

form shown in Fig. 1.1. Thus, the degree to which a numerical
age, say u = 28, is compatible with the concept of young is
0.7, while the compatibilities of 30 and 35 with young are 0.5
and 0.2, respectively. (The age at which the compatibility

takes the value 0.5 is the crossover point of young.) Equiva-

lently, the function Myoung may be viewed as the membership
function of the fuzzy set young, with the value of Myoung at
u representing the grade of membership of u in young.

Since young is a fuzzy set with no sharply defined boun-

daries, the conventional interpretation of the proposition

"Tosi is young," namely, "Tosi is a member of the class of
young men," is not meaningful if membership in a set is

1 summary of the basic properties of fuzzy sets is presented
in the Appendix.
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Figure 1.1 Compatibility Function o4 young.

interpreted in its usual mathematical sense. To circumvent
this difficulty, we shall view (1.1) as an assertion of a
restriction on the possible values of Tosi's age rather than
as an assertion concerning the membership of Tosi in a class
of individuals. Thus, on denoting the restriction on the
age of Tosi by R(Age(Tosi)), (1.1) may be expressed as an
assignment equation

R(Age(Tosi)) = young (1.4)
in which the fuzzy set young (or, equivalently, the unary
fuzzy relation young) is assigned to the restriction on the

variable Age(Tosi). In this instance, the restriction

R(Age(Tosi)) is a fuzzy restriction by virtue of the fuzzi-
ness of the set young.
Using the same point of view, (1.2) may be expressed as
R(Color(Hair(Ted))) = gray (1.5)
Thus, in this case, the fuzzy set gray is assigned as a value
to the fuzzy restriction on the variable Color(Hair(Ted)).

In the case of (1.1) and (1.2), the fuzzy restriction
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has the form of a fuzzy set or, equivalently, a unary fuzzy
relation. In the case of (1.3), we have two variables to
consider, namely, Height(Sakti) and Height(Kapali). Thus, 1in
this instance, the assignment equation takes the form
R(Height(Sakti), Height(Kapali)) = approximately equal
(1.6)

in which approximately equal is a binary fuzzy relation

characterized by a compatibility matrix pwapproximately equal

(u,v) such as shown in Table 1.2.

Table 1.2. Compatibility matrnix of the fuzzy
ReLation approximately equal.

u N 5'6 5'8 5'10 6 6'2 6'4
5'6 1 0.8 0.6 0.2 0

5'8 0.8 ] 0.9 0.7 0.3

5'10 0.6 0.9 ! 0.9 0.7

6 0.2 0.7 0.9 1 0.9 0.8
6'2 0 0.3 0.7 0.9 ] 0.9
6'L 0 0 0 0.8 0.9 1

Thus, if Sakti's height is 5'8 and Kapali's is 5'10, then the
degree to which they are approximately equal is 0.9.

The restrictions involved in (1.1), (1.2) and (1.3) are
unrelated in the sense that the restriction on the age of
Tosi has no bearing on the color of Ted's hair or the height
of Sakti and Kapali. More generally, however, the restric-
tions may be interrelated, as in the following example.

u is small (1.7)

u and v are approximately equal (1.8)

In terms of the fuzzy restrictions on u and v, (1.7)

and (1.8) translate into the assignment equations
R(u) = small (1.9)
R(u,v) = approximately equal (1.10)
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where R(u) and R(u,v) denote the restrictions on u and (u,v),
respectively.

As will be shown in Section 2, from the knowledge of a
fuzzy restriction on u and a fuzzy restriction on (u,v) we
can deduce a fuzzy restriction on v. Thus, in the case of
(1.9) and (1.10), we can assert that

R(v)= R(u) oR(u,v)=small oapproximately equal (1.11)

where o denotes the composition2 of fuzzy relations.
The rule by which (1.11) is inferred from (1.9) and

(1.10) is called the compositional rule of inference. As

will be seen in the sequel, this rule is a special case of a
more general method for deducing a fuzzy restriction on a
variable from the knowledge of fuzzy restrictions on related
variables.

In what follows, we shall outline some of the main ideas
which form the basis for the calculus of fuzzy restrictions
and sketch its application to approximate reasoning. For
convenient reference, a summary of those aspects of the
theory of fuzzy sets which are relevant to the calculus of

fuzzy restrictions is presented in the Appendix.

2. CALCULUS OF FUZZY RESTRICTIONS

The point of departure for our discussion of the calcu-
lus of fuzzy restrictions is the paradigmatic proposition1
p B x s p (2.1)

which is exemplified by

21f A is a unary fuzzy relation in U and B is a binary fuzzy
relation in U x V, the membership function of the composi-
tion of A and B is expressed by ppopg(v) = V,(wplu) Apglu,v),
where V, denotes the supremum over u € U. A more detailed
discussion of the composition of fuzzy relations may be
found in [2] and [3].

1The symbol & stands for "denotes" or "is defined to be."

6

FUZzZY SETS AND THEIR APPLICATIONS
Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura



L. A. ZADEH

x is a positive integer (2.2)
Soup is hot (2.3)
Elvira is blond (2.4)
If P is a Tabel of a nonfuzzy set, e.g., P A set of
positive integers, then "x is P," may be interpreted as "x
belongs to P," or, equivalently, as "x is a member of P."
In (2.3) and (2.4), however, P is a label of a fuzzy set,
i.e., P 4 hot and P 4 blond. In such cases, the interpreta-

tion of "x is P," will be assumed to be characterized by what

will be referred to as a relational assignment equation.

More specifically, we have

Definition 2.5 The meaning of the proposition

o) o X is P (2.6)
where x is a name of an object (or a construct) and P is a
label of a fuzzy subset of a universe of discourse U, is ex-
pressed by the relational assignment equation

R(A(x)) =P (2.7)

where A is an implied attribute of x, i.e., an attribute

which is implied by x and P; and R denotes a fuzzy restric-
tion on A(x) to which the value P is assigned by (2.7). In
other words, (2.7) implies that the attribute A(x) takes
values in U and that R(A(x)) is a fuzzy restriction on the
values that A(x) may take, with R(A(x)) equated to P by the
relational assignment equation.

As an illustration, consider the proposition "Soup is
hot." In this case, the implied attribute is Temperature and
(2.3) becomes

R(Temperature(Soup)) = hot (2.8)
with hot being a subset of the interval [0,212] defined by,
say, a compatibility function of the form (see Appendix)

Rhot(u) = SCu; 32,100,200) (2.9)

Thus, if the temperature of the soup is u = 100°, then the
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degree to which it is compatible with the fuzzy restriction
hot is 0.5, whereas the compatibility of 200° with hot is
unity. It is in this sense that R(Temperature(Soup)) plays
the role of a fuzzy restriction on the soup temperature which
is assigned the value hot, with the compatibility function of
hot serving to define the compatibilities of the numerical
values of soup temperature with the fuzzy restriction hot.

In the case of (2.4), the implied attribute is
Color(Hair), and the relational assignment equation takes
the form

R(Color(Hair(Elvira))) = blond (2.10)

There are two important points that are brought out by
this example. First, the implied attribute of x may have a
nested structure, i.e., may be of the general form

A CAR -1 Cuoi b Ao (AP (X)) o u)) s (2.11)
and second, the fuzzy set which is assigned to the fuzzy
restriction (i.e., blond) may not have a numerically-valued

base variable, that is, the variable ranging over the uni-

verse of discourse U. In such cases, we shall assume that

P is defined by exemplification, that is, by pointing to spe-

cific instances of x and indicating the degree (either numeri-
cal or Tinguistic) to which that instance is compatible with
P. For example, we may have ppjgpd(Jdune) = 0.2,

Rplond(Jurata) = very high, etc. In this way, the fuzzy set
blond is defined in an approximate fashion as a fuzzy subset
of a universe of discourse comprised of a collection of in-
dividuals U = {x}, with the restriction R(x) playing the

role of a fuzzy restriction on the values of x rather than

on the values of an implied attribute A(x).2 (In the sequel,

2A more detailed discussion of this and related issues may
be found in [3], [4] and [5].
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we shall write R(x) and speak of the restriction on x rather
than on A(x) not only in those cases in which P is defined by
exemplification but also when the implied attribute is not
identified in an explicit fashion.)

So far, we have confined our attention to fuzzy restric-
tions which are defined by a single proposition of the form
"x is P." In a more general setting, we may have n constit-

uent propositions of the form

xi is Py, 1 =1,....n (2.12)
in which P; is a fuzzy subset of U;, i=1,...,n. In this
case, the propositions "x; is P;," i=1,...,n, collectively
define a fuzzy restriction on the n-ary object (Xxy,....,Xp).

The way in which this restriction depends on the P; is dis-

cussed in the following.

The Rules of Implied Conjunction and Maximal Restriction

For simplicity we shall assume that n = 2, with the con-
stituent propositions having the form

x is P (2.13)

y is Q (2.14)
where P and Q are fuzzy subsets of U and V, respectively.

For example,

Georgia is very warm (2.15)

George is highly intelligent (2.16)
or, if x=y,

Georgia is very warm (2.17)

Georgia is highly intelligent (2.18)

The rule of implied conjunction asserts that, in the ab-

sence of additional information concerning the constituent
propositions, (2.13) and (2.14) taken together imply the com-
posite proposition "x is P and y is Q;" that is,

{x is P, y is Q} O x is P and y is Q (2.19)
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Under the same assumption, the rule of maximal restric-

tion asserts that

x is P and y is Q O (x,y) is P x Q (2.20)
and, if x =y,
x is P and x is Q O x is P N Q (2.21)

where P x Q and P N Q denote, respectively, the cartesian
product and the intersection of P and Q.3

The rule of maximal restriction is an instance of a more
general principle which is based on the following properties
of n-ary fuzzy restrictions.

Let R be a n-ary fuzzy relation in Uy x ... x U, which is

characterized by its membership (compatibility) function

pR(uy,...,uy) Let g = (I7,...,1y) be a subsequence of the
index sequence (1,..., n) and let q' denote the complementary
subsequence (Jj1.,..., j|). (E.g., ifn=5and q= (2,4,5),

then q' = (1,3).). Then, the projection of R on

i X oo, X Ujk
membership function is related to that of R by the expression

U(q) é U is a fuzzy relation, Rq, in U(q) whose

MRq(Uj1 ..... Ujk) Vu(q,)uR(ul ..... up) (2.22)
where the right-hand member represents the supremum of
(U, ..., Up) over the u's which are in ucq').

[f R is interpreted as a fuzzy restriction on (uq,..., Up)
in Ujx...xU,, then its projection on Uj]x ...ink, Rg» consti-

tutes a marginal restriction which is induced by R in U(q).

Conversely, given a fuzzy restriction Rq in U(q), there exist

fuzzy restrictions in Uy x...x U, whose projection on U(q)

3The cartesian product of P and Q is a fuzzy subset of U x V
whose membership function is expressed by MPXQ(u,v) =
Mp(U) /A KQ(v). The membership function of P N Q is given by
pp N Qu) = puy(U) A pqlu). The symbol /A stands for min.
(See the Appendix for more details.)
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is Rq. From (2.22), it follows that the 1argest4 of these

restrictions is the cylindrical extension of Rq, denoted by

Rq, whose membership function is given by

5oo(up, ..., Up) pr  (uj ) (2.23)

and whose base is R. (Rq is referred to as the cylindrical

extension of Rq because the value of Miq at any point

QU U,) is the same as at the point (up,..., Up) so long
as p11 = Ujpee u%k Uj, )
Since Rq is the largest restriction in Uy x...x Uy

whose base is Rq, It follows that
R C qu (2.24)

for all g, and hence that R satisfies the containment

relation

R C qu N qu n ... nN Rqr (2.25)
which holds for arbitrary index subsequences qp,..., qpe Thus,
if we are given the marginal restrictions Rq] ..... Rq , then

r
the restriction
A_ —_

RMAX(qu ..... Rqr) = qu n ... nN qu (2.26)
is the maximal (i.e., Teast restrictive) restriction which is
consistent with the restrictions wa,...,Rq . It is this

r
choice of Rypx given Rq] ..... Rq,. that constitutes a general
r

selection principle of which the rule of maximal restriction
is a special case.”
By applying the same approach to the disjunction of two

propositions, we are led to the rule

4p fuzzy relation R in U is larger than S (in U) iff
pRr(U) 2 pg(u) for all u in U.

S5A somewhat analogous role in the case of probability dis-
tributions is played by the minimum entropy principle of
E. Jaynes and M. Tribus [6], [7].
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x is Pory is QO (x,y) is P+ Q (2.27)
or, equivalently,

X is P or y is QO (x,y) is (P" x Q")' (2.28)
where P' and Q' are the complements of P and Q, respectively,
and + denotes the union.®

As a simple illustration of (2.27), assume that

U=1+2+3 + 4

and that
P 2 small 2 1/1 + 0.6/2 + 0.2/3 (2.29)
large 2 0.2/2 + 0.6/3 + 1/4 (2.30)
0 2 very large = 0.04/2 + 0.36/3 + 1/4 (2.31)
Then
P' = 0.4/2 + 0.8/3 + 1/4 (2.32)

Q' = 1/1 + 0.96/2 + 0.64/3
and

P+ Q= (P x Q)" =1/((1,1) + (1,2) + (1,3) + (1,4)

(2.33)

(2,4) + (3,4) + (4,4)) +
6/((2,1) + (2,2) + (2,3))
0.3/((3,1) + (3,2))+ 0.36/((3,3)
(4,3)) + 0.04/(4,2)

+ 4+ o 4+

Conditional Propositions

In the case of conjunctions and disjunctions, our in-
tuition provides a reasonably reliable guide for defining
the form of the dependence of R(x,y) on R(x) and R(y). This
is less true, however, of conditional propositions of the
form

o) & If x is P then y is Q else y is S (2.34)

6The membership function of P' is related to that of P by
P (Uu) =1 - pp(u). The membership function of the union
of P and Q is expressed by Mp+Q(u) = up(u) Vopq(u), where
\VV denotes max.
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and

q 2 1f x is P then y is Q (2.35)
where P is a fuzzy subset of U, while Q and S are fuzzy
subsets of V.

With this qualification, two somewhat different defini-
tions for the restrictions induced by p and q suggest them-
selves. The first, to which we shall refer as the maximin

rule of conditional propositions, is expressed by

If x is P then y is Q else y is S O (x,y) is
PxQ+ P xS, (2.36)
which implies that the meaning of P is expressed by the re-
lational assignment equation
R(x,y) =P xQ+P" xS (2.37)
The conditional proposition (2.35) may be interpreted as
a special case of (2.34) corresponding to S = V. Under this
assumption, we have
If x is P then y is Q O (x,y) is P x Q + P"'" x V (2.38)
As an illustration, consider the conditional proposition
D & If Maya is tall then Turkan is very tall (2.39)
Using (2.38), the fuzzy restriction induced by p is de-
fined by the relational assignment equation
R(Height(Maya), Height(Turkan)) = tall x very tall +
+ not tall x V
where V might be taken to be the interval [150,200] (in

centimeters), and tall and very tall are fuzzy subsets of V

defined by their respective compatibility functions (see

Appendix)

wig1] = S(160, 170, 180) (2.40)
and

Myery tall = S¢(160, 170, 180) (2.41)

in which the argument u is suppressed for simplicity.
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An alternative definition, to which we shall refer as
the arithmetic rule of conditional propositions, is expressed

by

If x is P then y is Q else y is S O (x,y) is
((PXxXVOUxQ + (P xVOUXxS (2.42)
or, equivalently and more simply,
If x is P then y is Q else y is S O (x,y) is
(P'® Q)N (PABS) (2.43)
where @ and © denote the bounded-sum and bounded-difference

operations,7 respectively; P and Q are the cylindrical exten-
sions of P and Q; and + is the union. This definition may
be viewed as an adaptation to fuzzy sets of Lukasiewicz's
definition of material implication in La1eph1 logic, namely
[8]

vir — s) B omin(1.1 - vir) + vis)) (2.44)
where v(r) and v(s) denote the truth-values of r and s,
respectively, with 0 = v(r) =1, 0 = v(s) = 1.
In particular, if S is equated to V, then (2.43) reduces to

If x is P then y is Q O (x.y) is (P' @ Q) (2.45)
Note that in (2.42), P x V and U x Q are the cylindrical ex-
tensions, 5 and 6, of P and Q, respectively.

0f the two definitions stated above, the first is some-
what easier to manipulate but the second seems to be in clo-
ser accord with our intuition. Both yield the same result
when P, Q and S are nonfuzzy sets.

As an illustration, in the special case where x =y and
P=20Q, (2.45) yields

/The membership functions of the bounded-sum and-difference
of P and Q are defined by pp@q(u) = min(1, Mp(U) + pqlu))
and MpCJQ(U) = max(0, Mp(U) - pq(u), u €& U, where + denotes
the arithmetic sum.

14

FUZzZY SETS AND THEIR APPLICATIONS
Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura



L.A. ZADEH

If x is P then x is P O x is (P'@® P) (2.46)
X is V
which implies, as should be expected, that the proposition in
question induces no restriction on x. The same holds true,

more generally, when P C Q.

Modification of Fuzzy Restrictions

Basically, there are three distinct ways in which a fuz-
zy restriction which is induced by a proposition of the form

) o X is P
may be modified.

First, by a combination with other restrictions, as in

r 4 x is P and x is Q (2.47)
which transforms P into P N Q.

Second, by the application of a modifier m to P, as in

Hans is very kind (2.48)
Maribel is highly temperamental (2.49)
Lydia is more or less happy (2.50)

in which the operators very, highly and more or less modify

the fuzzy restrictions represented by the fuzzy sets kind,

temperamental and happy, respectively.

And third, by the use of truth-values, as in

(Sema is young) is very true (2.51)

in which very true is a fuzzy restriction on the truth-value
of the proposition "Sema is young."

The effect of modifiers such as very, highly, extremely,

more or less, etc., is discussed in greater detail In [9],

[10] and [11]. For the purposes of the present discussion,
it will suffice to observe that the effect of very and more
or less may be approximated very roughly by the operations
CON (standing for CONCENTRATION) and DIL (standing for
DILATION) which are defined respectively by
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_ Y
CON(A)_l[U (pp (U /U (2.52)

and

_ 0.5
DIL(A)—J’U (A (W) /u (2.53)

where A is a fuzzy set in U with membership function pmp, and

A= (W / u
| (2.54)

is the integral representation of A. (See the Appendix.)

Thus, as an approximation, we assume that

very A = CONC(A) (2.55)
and
more or less A = DIL(A) (2.56)
For example, if
100 u
2\—1
= 1+(— /
young J’O ( (30>> u (2.57)
then
100 U 2.
= T+ (== /
ver oun J; ( (30) ) u (2.58)
and
100 U205
= L+ (— =/
more or less young Jb ( (30) ) u (2.59)

The process by which a fuzzy restriction is modified by
a fuzzy truth-value is significantly different from the point
transformations expressed by (2.55) and (2.56). More speci-

fically, the rule of truth-functional modification, which de-

fines the transformation in question, may be stated in sym-

bols as
(x is Q) is 0O x is pél o T (2.60)

where 7 is a linguistic truth-value (e.g., true, very true,
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1 is a re-

lation inverse to the compatibility function of A, and Mélo T

L with the

false, not very true, more or less true, etc.); ”6

is the composition of the nonfuzzy relation “6
unary fuzzy relation T. (See footnote 2 in Section 1 for the
definition of composition.)

As an illustration, the application of this rule to the

proposition

(Sema 1is young) is very true (2.61)
yields
-1
Sema is Wyoyng o very true (2.62)

Thus, if the compatibility functions of young and very true

have the form of the curves labeled Myoung, and pyery true
in Fig. 2.1, then the compatibility function of Kyoung © Very
true is represented by the curve . The ordinates of

p Y Hyoung,
Myoung, C€an readily be determined by the graphical procedure
illustrated in Fig. 2.1.

tpu

[ Huery true

B
~>

/_.I"'-I)‘OUHQ (V)

F!ounq,

Hvery true {v)—

i‘younqz

oy
-

0 u age
Figure 2.1 I12Lustnation of Truth-Functional
Modigication.

The important point brought out by the foregoing dis-

cussion is that the association of a truth-value with a

17

FUZzZY SETS AND THEIR APPLICATIONS
Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura



L.A. ZADEH

proposition does not result in a proposition of a new type;
rather, it merely modifies the fuzzy restriction induced by
that proposition In accordance with the rule expressed by
(2.60). The same applies, more generally, to nested propo-
sitions of the form
(...(((x is Pp) is 71) 1S 7o)...is 7)) (2.63)

in which Tq...7, are linguistic or numerical truth-values.

It can be shown® that the restriction on x which is induced

by a proposition of this form may be expressed as

X 1‘5 Pn+1
where
Pk+1=ugk1 o, k=1,2, ....n (2.64)

3. APPROXIMATE REASONING (AR)

The calculus of fuzzy restrictions provides a basis for
a systematic approach to approximate reasoning (or AR, for
short) by interpreting such reasoning as the process of ap-
proximate solution of a system of relational assignment equa-
tions. In what follows, we shall present a brief sketch of
some of the main ideas behind this interpretation.

Specifically, let us assume that we have a collection of
objects xj,...,X,, a collection of universes of discourse
Up,....U,, and a collection, {Pn}, of propositions of the
form

e B Oy Xy Xp ) S Ppor = 1,00 N (3.1)

PREEREE

8A more detailed discussion of this and related issues may
be found in [4].
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in which P, is a fuzzy relation in Url X ... X Urk-l E.g.,
1 8 xy is small (3.2)
P & x1 and xp are approximately equal (3.3)
in which U = Uy B (w,); small is a fuzzy subset of the

real line (-o,»); and approximately equal is a fuzzy binary

relation in (-o,00) x (-o0,0),

As stated in Section 2, each P, in {P,.} may be trans-
lated into a relational assignment equation of the form

R(Arl(xrl)’---’Ark(xrk))=Pr , r=1,...,N (3.4)
where Ap. is an implied attribute of x,., 1 =1,...,k, (with
k dependent on r). Thus, the collection of propositions{py}
may be represented as a system of relational assignment equa-
tions (3.4).

Let ﬁr be the cylindrical extension of P,., that is,

Pr = Pp x USl X ... X USZ (3.5)
where the index sequence (sqy,..., S/) is the complement of the
index sequence (rq,..., re) (i.e., if n =5, for example, and

(ri, ro, r3) = (2,4,5), then (s1,s2)=1(1,3)).

By the rule of the implied conjunction, the collection
of propositions {P,} induces a relational assignment equation
of the form

R(AL(X1) ..., Ap(xp)) P1N...NOPy (3.6)
which subsumes the system of assignment equations (3.4). It

is this equation that forms the basis for approximate infer-

ences from the given propositions P1, ..., PN-

Specifically, by an inference about (xrl ..... xrk) from
1Tn some cases, the proposition HOTSERERE Kp ) is Pp, " may
be expressed more naturally in English as "xp; and Xrk
are Pp."
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{P.}, we mean the fuzzy restriction resulting from the pro-
jection of P & P1>...>Py on Upp X...x Upg. Such an infer-
ence will, in general, be approximate in nature because of
(a) approximations in the computation of the projection of P;
and/or (b) Tinguistic approximation to the projection of P by
variables whose values are linguistic rather than numerical.?

As a simple illustration of (3.6), consider the propo-

sitions
X1 is Pq (3.7)
x1 and xo are Pj (3.8)

In this case, (3.6) becomes
R(A(X7),A(Xp)) = Py N P2 (3.9)
and the projection of py; N P2 on U, reduces to the composi-
tion of Py and Po. In this way, we are led to the composi-
tional rule of inference which may be expressed in symbols as
X1 is Py (3.10)

x1 and xp are Po

X2 is P10P2
or, more generally,
x1 and xp are P (3.11)

Xo and X3 are Py

x1 and X3 are Py o Py

in which; the respective inferences are shown below the hori-

zontal Tine.

2p linguistic variable is a variable whose values are words
or sentences in a natural or artificial Tanguage. For ex-
ample, Age is a linguistic variable if its values are as-
sumed to be young. not younq, very young, more or less yound,
etc. A more detailed discussion of Tinguistic variables may
be found in [3], [4] and [11]. (See also Appendix.)
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As a more concrete example, consider the propositions

X1 1s small (3.12)

x1 and xp are approximately equal (3.13)
where

U= Uy 214243 +4 (3.14)

small A 1/1 + 0.6/2 + 0.2/3 (3.15)

and
approximately equal = 1/((1,1) + (2,2) + (3,3) + (4,4))
(3.16)
+ 0.5/((1,2) + (2,1) + (2,3) +
(3,2) + (3,4) + (4,3))

In this case, the composition small o approximately

equal may be expressed as the max-min product of the rela-

tion matrices of small and approximately equal. Thus

small o approximately equal = [1 0.6 0.2 0] o

1 0.5 0

0.5 1 0.5
¥ 0.5 1 0.5
0 0 0.5 1

=[1 0.6 0.5 0.2] (3.17)
and hence the fuzzy restriction on x, is given by
R(xo) = 1/1 + 0.6/2 + 0.5/3 + 0.2/4 (3.18)

Using the definition of more or less (see (2.56)),a

rough Tinguistic approximation to (3.18) may be expressed as
LA(1/1 + 0.6/2 + 0.5/3 + 0.2/4) = more or less small
(3.19)

where LA stands for the operation of Tinguistic approximation.

In this way, from (3.12) and (3.13) we can deduce the approxi-
mate conclusion

X is more or less small (3.20)
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which may be regarded as an approximate solution of the rela-
tional assignment equations
R(x1) = small (3.21)

and

R(x1.Xxp) = approximately equal (3.22)

Proceeding in a similar fashion in various special cases,
one can readily derive one or more approximate conclusions
from a given set of propositions, with the understanding that
the degree of approximation in each case depends on the defi-
nition of the fuzzy restrictions which are induced by the
propositions in question. Among the relatively simple ex-
amples of such approximate inferences are the following.

x1 is close to x» (3.23)

Xxo is close to x3

x1 1s more or less close to x3

Most Swedes are tall (3.24)

NiTs is a Swede

It is very likely that Nils is tall

Most Swedes are tall (3.25)
Most tall Swedes are blond

Karl is a Swede

It is very 1ikely that Karl is tall and it is

more or less (very likely) that Karl is blond.

It should be noted that the Tast two examples involve
a fuzzy quantifier, most, and fuzzy linguistic probabilities

very likely and more or less (very likely). By defining most

as a fuzzy subset of the unit interval, and tall as a fuzzy

subset of the interval [150,200], the proposition p a Most
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Swedes are tall induces a fuzzy restriction on the distribu-

tion of heights of Swedes, from which the conclusion "It is

very likely that Nils is tall," follows as a linguistic ap-

proximation. The same applies to the last example, except

that the probability very likely is dilated in the consequent
proposition because of the double occurrence of the quanti-

fier most among the antecedent propositions. The goodness of
the Tinguistic approximation in these examples depends essen-

tially on the degree to which very likely approximates to

most.
A more general rule of inference which follows at once
from (2.45) and (3.10) may be viewed as a generalization of

the classical rule of modus ponens. This rule, which will be

referred to as the compositional modus ponens, is

by
x is P (3.26)
If x is Q then y is S

y is P o (6(} S)
where @ 1is the bounded-sum operation, Q' is the cylindrical
extension of the complement of Q, and S is the cylindrical
extension of S. Alternatively, using the maximin rule for
conditional propositions (see (2.36)), we obtain

x is P (3.27)

If x is Q then y is S

y isPo(Q xS+ Q")
where + is the union and Q' o Q" x V.
Note 3.28. If P =Q and P and S are nonfuzzy, both

(3.26) and) (3.27) reduce to the classical modus ponens
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X is P (3.29)
If x is P then y is S

y is S
However, if P = Q and P is fuzzy, we do not obtain (3.29)

because of the interference effect of the implied part of the

conditional proposition "If x is P then y is S," namely "If

x is P'" then y is V." As a simple illustration of this ef-
fect, let U=1+ 2+ 3 + 4 and assume that

P=20.6/2+ 1/3 + 0.5/4 (3.30)
and

S=1/2 + 0.6/3 + 0.2/4 (3.31)

in this case,
a

| . 1]
ok 1 1 0.6
PO - o 1 0.6 0.6 (3.32)
0.5 1 1 0.7
R 1 1 1]
0.4 0.6 0.6 0.6
Pxs+P = | 4 ] 0.6 0.2 (3.33)
0.5 0.5 0.5 0.5

and both (3.26) and (3.27) yield

y =0.5/1 +1/2 + 0.6/3 + 0.6/4 (3.34)
which differs from S at those points at which wg(v) is below
0.5.

The compositional form of the modus ponens is of use

in the formulation of fuzzy algorithms and the execution of
fuzzy instructions [11]. The paper by S. K. Chang [12] and
the recent theses by Fellinger [13] and LeFaivre [14] pre-
sent a number of interesting concepts relating to such in-

structions and contain many illustrative examples.
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4. CONCLUDING REMARKS

In the foregoing discussion, we have attempted to convey
some of the main ideas behind the calculus of fuzzy restric-
tions and its application to approximate reasoning. Although
our understanding of the processes of approximate reasoning
is quite fragmentary at this juncture, it is very likely that,
in time, approximate reasoning will become an important area
of study and research in artificial intelligence, psychology
and related fields.
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APPENDIX

Fuzzy Sets — Notation, Terminology and Basic Properties

The symbols U, V, W,..., with or without subscripts,
are generally used to denote specific universes of discourse,
which may be arbitrary collections of objects, concepts or
mathematical constructs. For example, U may denote the set
of all real numbers; the set of all residents in a city; the
set of all sentences in a book; the set of all colors that
can be perceived by the human eye, etc.

Conventionally, if A is a fuzzy subset of U whose ele-

ments are up,...,up, then A is expressed as
A= A{up,...,.upy!l (A1)
For our purposes, however, it is more convenient to express
A as
A=up + ...+ up (A2)
or
n
A=y (A3)
=1

with the understanding that, for all 1i,],

Uj + uj = uj + uj (A4)
and

Ui + Uy = Uj (A5)

As an extension of this notation, a finite fuzzy subset
of U is expressed as

F= wiui +...+ ppuy (A6)
or, equivalently, as

F=pwny/up +...+ py/uy (A7)

27

FUZzZY SETS AND THEIR APPLICATIONS
Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura



L.A. ZADEH

where the wi, i=1,..., n, represent the grades of membership

of the uj in F. Unless stated to the contrary, the w; are
assumed to 1lie in the interval [0,1], with 0 and 1 denoting
no membership and full membership, respectively.

Consistent with the representation of a finite fuzzy
set as a linear form in the uj, an arbitrary fuzzy subset of

U may be expressed in the form of an integral

Fz,[ wr (u) /7 u (A8)
U

in which wp = U - [0,1] is the membership or, equivalently,

the compatibility function of F; and the integral J denotes

U
the union (defined by (A28)) of fuzzy singletons pp(u)/u

over the universe of discourse U.

The points in U at which pp(U) > 0 constitute the
support of F. The points at which wp(U) = 0.5 are the
crossover points of F.

Example A9. Assume

U=a+b+c+d (A10)
Then, we may have

A

a +b+d (A11)

and

F=20.3a +0.90 +d (A12)

as nonfuzzy and fuzzy subsets of U, respectively.
If

U=0+0.1+0.2+...+1 (A13)

then a fuzzy subset of U would be expressed as, say,
F=20.3/0.5+0.6/0.7 + 0.8/0.9 + 1/1 (A14)
If U= 1[0,1], then F might be expressed as
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1
F:I 1 /2 (A15)
0 1+02

which means that F is a fuzzy subset of the unit interval

[0,1] whose membership function is defined by

wE (U) = (A16)

1+u2

In many cases, it is convenient to express the membership
function of a fuzzy subset of the real 1line in terms of a
standard function whose parameters may be adjusted to fit a
specified membership function in an approximate fashion. Two

such functions, of the form shown in Fig. Al, are defined

below.
s(u; a,B,y) =0 for u = « (A17)
=2 EF—:JEE? for =u =
'Y_OLE « = =B
1 -2 DE—U_O‘[? for B = u =
’Y_OLE B_ =
=1 for u = v
aw(u; B,y) = S(u; vy-B, y"%, v) for u =« (A18)
=1-S(u; v, v + %, y +B) for u > v
+
In S(u; a, B, vy), the parameter B, B = (XZ V, is the

crossover point. In w(u; B,y), B is the bandwidth, that is,
the separation between the crossover points of ar, while vy is
the point at which m is unity.

In some cases, the assumption that wg is a mapping from
U to [0,1] may be too restrictive, and it may be desirable

to allow wp to take values in a lattice or, more particularly,
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0.5 —— ———

(b)
Figure Al PRots o4 S and T Functions.
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in a Boolean algebra [15], [16], [17]. For most purposes,
however, it is sufficient to deal with the first two of the
following hierarchy of fuzzy sets.

Definition A19. A fuzzy subset, F, of U is of type 1

if its membership function, wp, is a mapping from U to [0,11];
and F is of type n, n=2,3,..., if wp is a mapping from U
to the set of fuzzy subsets of type n-1. For simplicity, it
will always be understood that F is of type 1 if it is not
specified to be of a higher type.

Example A20. Suppose that U is the set of all nonnega-

tive integers and F is a fuzzy subset of U Tabeled small
integers. Then F is of type 1 if the grade of membership of

a generic element u in F is a number in the interval [0,1],

e.g.,

Msma]] jnteqer‘s(u) = (l + (%)2)_1 u = 0,1,2,... (AZ].)

On the other hand, F is of type 2 if for each u in U, pp(u)
is a fuzzy subset of [0,1] of type 1, e.g., for u = 10,

Psmall integers(10) = low (A22)

where low is a fuzzy subset of [0,1] whose membership function

is defined by, say,

Riow(Vv) = 1-SCv; 0, 0.25, 0.5), v € [0,1] (A23)
which implies that

low = L}(l -S(v; 0, 0.25, 0.5))/v (A24)

I[f F is a fuzzy subset of U, then its a-level-set, F,,
is a nonfuzzy subset of U defined by ([18])

Fo = {Uulpp(u) =} (A25)

for 0 < a = 1.
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I[f U is a linear vector space, the F is convex iff for
all A e [0,1] and all uy, up in U,

pE (Aug + (1 -MUp) = min(pp (up),pp (up)) (A26)
In terms of the level-sets of F, F is convex iff the Fa are

convex for all a € (O,l].1

The relation of containment for fuzzy subsets F and G of
U is defined by

FCG e pplu) = pglu), uel (A27)
Thus, F is a fuzzy subset of G if (A27) holds for all u in U.

Operations on Fuzzy Sets

If F and G are fuzzy subsets of U, their union, F U G,
intersection, F N G, bounded-sum, F & G, and bounded-
difference, F © G, are fuzzy subsets of U defined by

FUG 8 ) Vopgu)/u (A28)
U

FNG-= J' pECu) A pgCu)/u (A29)
U

F@G=J' 1A (pp(w) + pglud)/u (A30)
U

FOG=f0V (mp(w) V pglu))/u (A31)
U

where VV and A denote max and min, respectively. The comple-
ment of F is defined by

Fro=f Fu)/u (A32)
U
or, equivalently,

P =UOTF (A33)

1This definition of convexity can readily be extended to

fuzzy sets of type 2 by applying the extension principle
(see (A75)) to (AZ26).
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It can readily be shown that F and G satisfy the identities

(FNG'=F UG (A34)
(FuG"'"=F nagG' (A35)
(F® &' =F ©G (A36)
(FeE ' =F @G (A37)

and that F satisfies the resolution identity [2]
1
F = L) afy, (A38)

where F, is the a-level-set of F; af, is a set whose member-

ship function is Mof = QRF and ﬁj denotes the union of
the aF, with a« € (0,1].

Although it is traditional to use the symbol U to denote
the union of nonfuzzy sets, in the case of fuzzy sets it is
advantageous to use the symbol + in place of U where no con-
fusion with the arithmetic sum can result. This convention
is employed in the following example, which is intended to
illustrate (A28), (A29), (A30), (A31) and (A32).

Example A39. For U defined by (A10) and F and G ex-
pressed by

F=20.4a + 0.9b + d (A40)
G =0.6a + 0.5b (A41)
we have

F+G =0.6a+ 0.9b + d (A42)
FNG=20.4a + 0.5Db (A43)
F® G=a+b+d (A44)
FO G=20.4b +d (A45)

F'=20.6a + 0.1b + ¢ (A46)

33

FUZzZY SETS AND THEIR APPLICATIONS
Edited by Lotfi A. Zadeh, King-Sun Fu, Kokichi Tanaka, Masamichi Shimura



L.A. ZADEH

The linguistic connectives and (conjunction) and or
(disjunction) are identified with N and +, respectively.
Thus,

Fand 6 & F g (A47)
and
ForGg 2 F+c (A48)

As defined by (A47) and (A48), and and or are implied

to be noninteractive in the sense that there is no "trade-

of f" between their operands. When this is not the case, and
and or are denoted by <and> and <or>, respectively, and are
defined in a way that reflects the nature of the trade-off.

For example, we may have

Fcand> 6 2 1 pr(w) pglw/u (A49)
U

Fcor> B p (upn) + pg(w) - (W) pg(w)/u (A50)
l

whose + denotes the arithmetic sum. In general, the inter-
active versions of and and or do not possess the simplifying
properties of the connectives defined by (A47) and (A48),
e.g., associativity, distributivity, etc. (See [4].)

If « is a real number, then F® is defined by

Fa B J ()% (A1)
For example, for the fuzzy set defined by (A40), we have

F=20.16a + 0.81b + d (A52)
and

F1/2 = 0.63a + 0.95b + d (A53)

These operations may be used to approximate, very roughly,
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to the effect of the linguistic modifiers very and more or

less. Thus,

very F & f2 (A54)
and

more or less F B fl/2 (A55)

If Fq,..., Fy are fuzzy subsets of Up,..., Uy, then the
cartesian product of Fq,..., Fn 1s a fuzzy subset of Up x..

.X Uy, defined by

Fl X...x Fp = I(Mplmlm...Awnmn))/(ul ..... Up)

(A56)
Up x...xUp

As an illustration, for the fuzzy sets defined by (A40) and
(A41), we have

FxG

(0.4a + 0.9b + d) x (0.6a + 0.5b) (A57)
0.4/(a,a) + 0.4/(a,b) + 0.6/(b,a)
+ 0.5/(b,b) + 0.6/(d,a) + 0.5/(d,b)

which is a fuzzy subset of (a + b+ ¢ + d)x(a + b +c + d).

Fuzzy Relations

An n-ary fuzzy relation R in Uy x...x U, is a fuzzy

subset of Uy x...x U,. The projection of R on U11 Xouo X Ujk,
where (iq,..., i) 1s a subsequence of (1,..., n), is a relation

inUjp x...x Uy defined by

Proj Roon Uiy x...x Uy & J”MUJl ..... Uj[ pR(UT, .\t up)/Cug, ..., Up)
Ujl X X Ujk (A58)
where (jp,..., j/) is the sequence complementary to (ig,..., k)
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(e.g., if n=6 then (1,3,6) is complementary to (2,4,5)), and

VUjl uj[ denotes the supremum over Ujlx...x sz.

[f R s a fuzzy subset of Uj Uj . then its

17 ‘

cylindrical extension in Uj x...x U, is a fuzzy subset of

Up x...x U, defined by

R=J’ MR (Ui 5 .o Uiy )/ (U, Un ) (A59)

In terms of their cylindrical extensions, the composition
of two binary relations R and § (in U; x Uy and Uy x Usz,
respectively) is expressed by

RoS=Proj RN SonUp x Uy (A60)

where ﬁ and § are the cylindrical extensions of R and S in
Up x Up x Uz. Similarly, if R is a binary relation in Uj X
Up and § is a unary relation in Uy, their composition is

given by

R oS =Proj RN S on Uy (A61)

Example A62. Let R be defined by the right-hand member
of (A57) and

S=20.4a + b+ 0.8d (A63)
Then

Proj Ron U (8a +b+c+d) =0.4a + 0.6b+ 0.6d (A64)

and
RoS=20.4a + 0.5b + 0.5d (A65)

Linguistic Variables

Informally, a linguistic variable, X, is a variable
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whose values are words or sentences in a natural or artifi-
cial Tanguage. For example, if age is interpreted as a

linguistic variable, then its term-set, T (X), that is, the

set of its linguistic values, might be

T(age) = young + old + very young + not young + (A66)

very old + very very young +

rather young + more or 1ess young +...

where each of the terms in T(age) is a label of a fuzzy
subset of a universe of discourse, say U = [0,100].
A lingiustic variable is associated with two rules:

(a) a syntactic rule, which defines the well-formed sentences

in T(X); and (b) a semantic rule, by which the meaning of

the terms in T(X) may be determined. If X is a term in
T(X), then its meaning (in a denotational sense) is a subset

of U. A primary term in T(X) is a term whose meaning is a

primary fuzzy set, that is, a term whose meaning must be

defined a priori, and which serves as a basis for the com-
putation of the meaning of the nonprimary terms in T(X).

For example, the primary terms in (A66) are young and old,

whose meaning might be defined by their respective compati-
bility functions Wwygyng and pgiq. From these, then, the
meaning - or, equivalently, the compatibility functions - of
the non-primary terms in (A66) may be computed by the appli-
cation of a semantic rule. For example, employing (A54) and
(A55), we have

Byery young = (Pyoung)? (A67)

Mmore or less old ~ (ho1g)t/? (A68)

Mnot very young = 1 - (Myggﬂg)z (A6I)
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For illustration, plots of the compatibility functions of

these terms are shown in Fig. AZ.

COMPATIBILITY
t
young

very young f—not young

\J

o) 30 50 60
Figure A? Compatibility Function of young and its
Modi§ications.

The Extension Principle

Let f be a mapping from U to V. Thus,
v = f(u) (A70)

where u and v are generic elements of U and V, respectively.

Let F be a fuzzy subset of U expressed as

F = piup +...+ Rpup (A71)

or,more generally,

F = j e (U)/u (A72)
U
By the extension principle [3], the image of F under f is
given by
fOF) = g flup) +oo+ oy Flup) (A73)

or, more generally,
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f(F) =j pp(u)/f(w) (A74)
U

Similarly, if f is a mapping from U x V to W, and F and

G are fuzzy subsets of U and V, respectively, then

f(F.G) = J’ (RECU) A pg(v))/flu,v) (A75)
W
Example A/6. Assume that f is the operation of squaring.

Then, for the set defined by (Al4), we have

f(0.3/0.5 + 0.6/0.7 + 0.8/0.9 + 1/1) = 0.3/0.25 + 0.6/0.49
+ 0.8/0.81 + 1/1
(A77)

A

Similarly, for the binary operation V (= max),we have

(0.9/0.1 + 0.2/0.5 + 1/1) v (0.3/0.2 + 0.8/0.6)
=0.3/0.2 +0.2/0.5 + 0.8/1 (A78)
+ 0.8/0.6 + 0.2/0.6

It should be noted that the operation of squaring in (A77)
is different from that of (A51) and (Ab2).
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FUZZY PROGRAMS AND THEIR EXECUTION

K. Tanaka and M. Mizumoto
Department of Information
and Computer Sciences
Faculty of Engineering Science
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Toyonaka, Osaka 560, Japan

1. INTRODUCTION

In our daily 1life, we oftenencounter situations where we
shall not always need the exact and detailed information to
execute the intended behavior. For instance, let us suppose
the case where a person asks the way in a strange place. For
example, he will receive such an instruction as: "go straight
on this way and turn right at the signal, then you could
find the spot after about a few minutes walk." Then he could
get to the spot without trouble, if the instruction is true.
However, if we want to make a machine execute such an in-
struction as mentioned above, just then we shall find it
difficult to do.

In the real world, as a matter of fact, many ill-defined
and inexact instructions, that is, the so-called fuzzy
instructions exist which we want to translate and execute by
a machine. Therefore, the execution of fuzzy instructions
using a machine is of much interest and very useful in a wide
variety of problems relating to pattern recognition, control,
artificial intelligence, linguistics, information retrieval
and decision processes involved in psychological, economical
and social fields.

In this paper, a generalized automaton is proposed as
an abstract model for a fuzzy machine which can translate
and execute fuzzy programs and several methods which trans-

late a given sequence of fuzzy instructions into another
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sequence of precise instructions called a machine program

are also discussed.

In addition, the practical application is presented in

a few interesting examples to demonstrate the usefulness of

the foregoing proposal.

2. GENERA

A fin

LIZED FUZZY MACHINES

ite-state automaton has been taken up as a fuzzy

machine model which executes a fuzzy program by S. K. Chang

[1].
Here

a generali

formulated is an extended fuzzy machine based on

zed automaton and a few procedures for execution

of fuzzy programs are also presented.

Definition 1. A generalized machine M is a system

given by
M= (

where (1)
(i1)
(171)

P: X

(iv)
(v)

(vi)

k,X,w,xO,T,V) (D)

K is a finite set of machine instructions.
X is a finite set of internal states.

Q¢ is a function such that
Xx Kx X 5V (2)

and is called a state transition function.

The value of ¢, P(x,ux"') e V, designates a weight
value controlling the transition from a state x

to a new state x' for a given machine instruction
M.

Xg is an initial state in X.

T is a finite set of final states and is a subset
of X.

V is a space of weight (or grade) controlling the

state transition.
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In the present paper an "L-fuzzy automaton" with the
weight space defined in the lattice ordered semigroup is
considered as a general machine. Several machines are also
derived from L-fuzzy automata as their specific examples
(21, [6].

Let us now define V = (L,v,*,0,I) in a lattice ordered
semigroup L. where v and * denote a least upper bound in L
and an operation of semigroup, respectively; and 0 and I
denote zero (least element) and identity (greatest element),
respectively. Then the state transition of L-fuzzy automata
can be formulated as follows. For a given string of machine
instructions p = R T in K* where K* denotes a set of
all finite strings over K, the state transition function at
each step of the machine instruction will be w(xo, My xl),
w(xl, IPF xz),...,w(xn_l, K, xn). Then the state of the L-
fuzzy automaton is said to transit from X0 through X, one by
one by the string of machine instruction p and the weight
(or grade) corresponding to this state transition is simply
given by

w(xo, vy, Xl)*w(xl’ IPF xz)*...*w(xn_l, M, Xn) (3)

Thus the domain X x K x X of the state transition
function ¢ will be extended to X x K* x X and the weight
(or grade) of the state transition for any input string p =

MMyl e K* can be given recursively as

0 oy
DI for X X

Pix, e, x') =0 (4)
HO for X # X'
Px, m, x") = v [W(x, M. xl)*w(xl, Mo, XZ)*
X Qo Xoseon X0 g
*w(xnfl’ M, x') ] (5)

where e denotes a null string.
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Note: For the following algebraic structure of V, various
types of automata can be derived as specific cases of
L-fuzzy automata.

(i) For V = ([0,11, max, min, 0, 1), fuzzy automata
can be obtained.

(ii) For V.= ({0,1}, max, min, 0, 1), nondeterministic
automata can be obtained.

(i1i) For V.= ({0,1}, max, min, 0, 1), deterministic
automata can be obtained under the constraint as
follows: there exists x' uniquely such that

P(x, p, x') = 1 for each pair of x and p.

(iv) For V.= ([0,1], +, x, 0, 1), probabilistic
automata can be obtained under the constraint such

that Z (x, p, x") = 1.
X" eX
Definition 2. A generalized fuzzy machine is a system

M= (5, M, W) (6)

where (i) Z is a finite set of fuzzy instructions and each

fuzzy instruction 0. is a function such that

o, X x K s W (7)

(ii) M is a generalized automaton defined by
Definition 1.

(i11) W is a space of weight (or grade) with respect
to the selection of a machine instruction My The
value of 01(X1’ “i) e W designates the weight (or
grade) of selecting the maghine instruction e when a
generalized fuzzy machine M associated with a general-
ized automaton M in the state of X has received a

fuzzy instruction O -
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2.1. Fuzzy Machines Derived From Deterministic Automata

This is the case where a deterministic automaton 1is
chosen as an example of generalized machine M.
(a) For W= [0,1], a fuzzy-deterministic machine similar

to that of S. K. Chang can be derived, where
oi(xi, “1) = mwn[f(xj, 0., “1)’ A(xj, 0., uj)]

shows the grade of selecting the machine instruction M
when the machine M is in the state of X and receijves the
fuzzy instruction 0.. Here note that f(-) and A(-) in the
above equation represent the feasibility function and the
performance function, respectively [1].

(b) For W= [0,1], a probabilistic-deterministic machine

can be derived under the condition that

> oj(xj, “i) = 1 for every 0, € > and X o€ X.

K
This condition shows that